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3
Basic matrix operations

4
Matrix multiplication

o Let Ayxm and Bpxk, then (AB)nxk

o Let Ap.m and By, then (BA) “conformability error

(Bos) (Rasm) 5



Transpose and inverse of a matrix

|
Q\MM E/nrf‘\ - (AG, :[K)(/\] —> %%A@vn

o Transpose of Product (AB)' = B'A’ and (ABC) = C'B'A'

o Inverse of Product (AB)™* = B~*A~! and (ABC)™! = C"'B!A™!

o Transpose of an inverse equals inverse of a transpose (D~1)’ = (D)
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Law of iterated expectations

aw of Iterated Expectations (LIE): A useful trick

o Formally: The unconditional expectation of a random variable is equal to the
expectation of the conditional expectation of the random variable conditional on
some other random variable

E(Y) = EE[Y|X])

o Informally: the weighted average of the conditional averages is the unconditional
average

Example of LIE

® Say want average wage but only know average wage by education level
o LIE says we get the former by taking conditional expectations by education level
and combining them (properly weighted)

E[Wage] = E(E[Wage|Education])
= > Pr(Education;) - E|Wage|Education;]

Education;

Person Gender 1Q

M 120
2 M 115
3 M 110
4 F 130
5 F 125
6 [F 120

o E[IQ] = 120
o E[IQ | Male] = 115; E[IQ | Female] = 125
o LIE:E (E[IQ|Sex]) = (0.5)x115 + (0.5)x125 = 120



LIE: Proof for the discrete case

EHYIX) = ZX]E[V\X = x]p(x) 5 ?x
XX: (Zyp(y\X)) p(x) — Z_ Z ‘g?‘@—l}‘ >—’V E%IA’
- S " ?@/3) Bayes

o gyy;P(X-Y)lﬁ ‘2’2497?@‘/'9
3 %

= > wly) il
y
= K(Y)
12
EE(YX] = [ B(YIX = u)gs(u)ds

= [ ][ tteix = ] oy

[ [ i = wis()uct
: ./t U f(elX = u)gx(u)du} de
= /bt[fxydu]dt
= /tgy(t)dt

E(y) s
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OLS basics

OLS - As minimizing residuals
o Data with n observations and two variables: (x1,...xy) and (y1. ..., ¥)
o Find the line (3o + 41x) that best fits the data

Bo + Bux; is the fitted value for i

® The residual is &; = y; — y;

o Goal: minimize residuals or distance from the line (fitted values) to the data

OLS - As minimizing residuals
e We don't care if the residual ; is positive or negative, we want it to be small
.52
o So we square it: @
o Why not the absolute value? Good statistical reasons + harder to work with | - |

o We want all the mistakes to be small, so we really want to minimize 37, G



OLS - As minimizing residuals

min 3~
Bobr i

= > -5y
i=1

o Using calculus (deriving with respect to o, 31 and equating to zero)

106 —%)(vi =¥k _ 3 3706 —X)(vi — %) _ Sample covariance (xy)
i —x)? \" I¥T(x-x?  Sample variance (x)
18

Visual tour of OLS

® https://ryansafner.shinyapps.io/ols_estimation by min sse/

o https://seeing-theory.brown.edu/regression-analysis/
index.html#sectionl

® https://setosa.io/ev/ordinary-least-squares-regression/

® https://mgimond.github.io/Stats-in-R/regression.html

OLS as an estimator

o There is a population with two random variables x and y
o We take a random sample of size n: (x1,x2,.-Xn) and (y1.,y2. .., ¥n)
o We would like to see how y varies with changes in x

 What if y is affected by factors other than x?

o What is the functional form connecting these two variables?

o If interested in causal effect of x on y, how to distinguish from mere correlation?

20

as an estimator of the DGP parameters

o Assume the data generating proces (DGP)s is:

¥i = o+ Buxi + uj

o That is, this model holds in the population

o Not only x; affects y;, u; (called the error term) also does
e Do not confuse u; with &;

o We assume there is a linear relationship between y; and x;

® We never observe 5y and 1

21

Inference

e Goal: Estimate unknown parameters
o To approximate parameters, we use an estimator, which is a function of the data
o Thus, estimator is a random variable (it is a function of a random variable)

o Infer something about the parameters from the distribution of the estimator

2

Important notation

Based on this tweet: nttps://tuitter.con/nickehk/status/1272993322395557888

o Greek letters (e.g., /1) are the truth (i.e., parameters of the true DGP)
o Greek letters with hats (e.g., ji) are estimates (i.e., what we think the truth is)
o Non-Greek letters (e.g., X) denote sample/data
o Non-Greek letters with lines on top (e.g., X) denote calculations from the data
o We want to estimate the truth, with some calculation from the data (i = X)
e Data — Calculations —» Estimate > Truth
Hopefully
o Example: X — X — i — pu
~~
Hopefully

23



OLS as an estimator of the DGP parameters

o Assume the data generating process is:
¥i = Bp + Bixi + u;
2L

® Also assume Eu; =0
o Without loss of generality
e We can just change the intercept to force Eu; = 0
o For example if Eu; = ag
o Redefine model to y; = fo +ag +Hixi+ i —ag
o= -
new intercept new error term
+ Assume mean independence E(ui|x;) = E(u) for all values x
T iaabut let's take it for granted for now
Implies that E(u;]x) = E(u;) = 0
E(E(uilxi)) = 0

Implies that E(u;x;) = E

OLS as an estimator of the DGP parameters

o E(ylx) = fo+fix —p T )’([X(\ f(Br),Kl}f F(FX‘IX‘)M

Bt B 4 UeXc

o E(y;|x;): population regression ful tlon or conditional%xpectation function

e By our assumptions:

¥i— o - Bix) =0

— o~ 1)) =0

o These two conditions determine 3y and 31

OLS as an estimator of the DGP parameters

First equation

E(yi—Bo—Pixi) = 0
Ey; — fo — BiEx;

OLS as an estimator of the DGP parameters

Second equation

Ly Y e
ol = i ST p({x-2 e +20)

= BiE(x — Bx)(x — Ex;)
E(x; — Exi)(x —Ex;

— T : P' {E(K‘ ’ZFIZ&)+ ELLKL»
et armee () ?l ([E (Kc ef @‘)}

OLS as an estimator of the DGP parameters

o But we don't have x and y, nor do we know Ey; or Ex;

— Ex;)(y; — Ey:)

o We only have a random sample of size n: (x1,...,X,) and (yi, ., yn)
| The sample analogs:

o 130 (- B —Bs)=0

o 1Y Xl —Bo—Bix) =0

OLS as an estimator of the DGP parameters

First equation

n

1 - -
T li—bo—fx) = 0

i=1

1¢ P
;;}/f fo Jl;’Z;x. =




OLS as an estimator of the DGP parameters

Second equation

:'Zx,(y,—‘?uf%,x‘) =0
=
23 wlni— (7~ Bx) =) = 0
=
% xi(yi—¥i+BF-x) = 0

=1

3 nti-T) = 33 ox(Bil—w)
IS R -7 = At - F) -7
AN =R =) _
157 o _ZE =t

Sample covariance (x,y)
Sample variance (x)

OLS as an estimator of the DGP parameters

e Formulas are the same as “minimizing residuals”

o Show the OLS coefficients as estimator of the population parameters (o and 31)
® Some remarks:

o Can only estimate if the sample variance of x; is not zero

o In other words, if x; is not constant across all values of i

o Intuitively, the variation in x is what permits us to identify its impact in y

3
o Consider the multiple linear regression model
yi=xB+u
where 8 = (8o, B, -, Bk)' and x; = (L, ..., xk)'
o s of size (k x 1)
o x; is of size (k x 1)
o x/Bis of size (1 x k)(kx 1) =1x1
e Equivalent
y=XB+u
where 3 = (8o, B1, - B)'
o Bis of size (k x 1)
o Xis of size (n x k)
o XBis of size (nx k)(kx 1) = nx 1
32

Multiple regression

o Consider the multiple linear regression model

o+ K, xixBx is the conditional expectation function (E(y;xi))

o The population regression 3 coefficients solve (
N (ki -5 X

arg min E [(y/,l/-><fl7)2: i
o The sample equivalent is Xg F = (ﬂi, . Xr(
) NS 00) | S Gae)
S | Sl

T

X)Xy Bx

K .
C 2
_ )0

o We let the computer do the calculations, which are tedious even for small n
* Good to know what's going on behind the scenes

e But | honestly do not care if you know how invert a matrix

34

Simulations!

alpha=1 #intercept
beta=2 #slope
Nobs=10000 #how many observations?
X=runif (Nobs,-5,5)
#use the DGP to generate data
Y=alpha+beta*X+rnorm(Nobs)
—

1o (Y7X)

[ 4
summary (OLS)
———

35



ient are pretty close to the truth

Y~ %)

1Q Median
739 -0.0023

Max
0.67063.7211

xess 0.081 %0 0.01 % 0.5 ¢.°
1.008 on 99

0.9699,  Adjusted R
05 on 1 and 9998 DF,

But how close on average?

#Now lets repeat the process and see how close our estimates are
Reps=1000
20,

alpha_estimate=}Ulke
/L;e:a,esnmaze:uuu. a
e P A Y
X=runif (Nobs,-5,5) ~J D F/

#use the DGP to generate data
—P v=alpha+tbeta*X+rnorm(Nobs)
OLS=1m(Y~X)
ESt)maLeS=summarz(DLS]$coaf [,"Estimate"] Vwo fb & E
alpha_estimate-c(alpha_estimate ,Estimates[11) A e
R e e r et T T I \lectoe B ESada?
b - De

hist(beta_estimate,freq=F,breaks=30,
main="",las=1,xlab="Estimate of beta") D
abline (v=beta,col=’red’,lwd=2,1lty=2) B

37
Distribution of estimate of

150

oensiy

L0 15 200 200 200
& LS
Estimae ofbeta
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| 2

Conditional expectation function

onal expectation function (CEF)

e Assume we are interested in the returns to schooling

 Summarize the effect of schooling on wages with the CEF (E(yi[x;))

o The CEF is the expectation (i.e, population average) of y; with x; held constant
o E(yj|x;) provides a reasonable representation of how y changes with x

o Because x; is random, Ely; | ] is random

o Sometimes work with a particular value of the CEF (e.g., E[y; | x; = 12])



Property 1: CEF Decomposition Property

o y;i = E(yi|x) + u; where
1. u; is mean independent of x;; that is E(u;|x;) = 0

2. u; is uncorrelated with any function of x;

o In words: any random variable, y;, can be decomposed into two parts: the part
that can be explained by x; and the part left over that cannot be explained by x;

o Proof is in Angrist and Pischke (ch. 3)

Property 2: CEF Prediction Property

o Let m(x;) be any function of x;
* E(yilx) = arg minu)E[(y; = m(x))?]
o In words: The CEF is the minimum mean squared error predictor of y; given x;

o Proof is in Angrist and Pischke (ch. 3)

Property 3: Best linear approximation

o The population regression is the best linear approximation to the true nonlinear
CEF in a mean squared error sense:

B = Elxixi'] " Elxiyi] = argmin E[(Ely; | x] - x/b)’]

o In words: even if the true CEF is nonlinear (for example, E[y; |

= log(xi)),
regression is still a good approximation to the truth

Why linear regression may be of interest (summary)

| &

o If the CEF is linear. Then the population regression is it
o Then it makes the most sense to use linear regression to estimate it
o Linear regression may be interesting even if the underlying CEF is not linear

o E(y;|x;), is the minimum mean squared error predictor of y; given x; in the class of
all functions of x;

« The population regression function is the best we can do in the class of all linear
functions to approximate E(y;|x;)

Big picture

-

. Regression provides the best linear predictor for the dependent variable in the
same way that the CEF is the best unrestricted predictor of the dependent variable

N

If we prefer to think of approximating E(y;|x;) as opposed to predicting y, even if
the CEF is nonlinear, regression provides the best linear approximation to it

OLS Review

| &
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OLS Review

“Algebraic” properties of OLS

48

Residuals add up to zero

o Remembering how the first moment condition allows us to obtain o and 5;:

Flue He) 1 g8 26\ -0
\ Z('Gl Yi-Po-Bik

N o This means the OLS residuals always add up to zero, by construction,

The mean of the fitted values is the mean of the data

Because y; = y; + U; by definition,
A=A

e g (Yl + ve

Ve &Oc

Sample correlation between x; and residuals is zero

Similarly the way we obtained our estj

The sample covariance (and therefore the sample correlation) between the explanatory
variables and the residuals is always zero

B ng things together

Because the ; are linear functions of the x;, the fitted values and residuals are
uncorrelated, too:

(©]

(see formula for o)



Nobs=1000 #how many observations?
X=runif (Nobs,-5,5)
#use the DGP to generate data
¥Y=10+2*X"2+rnorm (Nobs)
OLS=1m(Y"X)
summary (OLS)

¢ plot (X g bty="L")

wpmpabline (OLS,col=2,1wd=2,1ty=2)

”points(mean(x].mean(‘{)‘pchZIQ,col=4vcex=1.5)

#Not a gTeat Tit...yet

#residual add to zero
sun(0LS$residuals)

#nean of fitted values is the mean of true values

mean (OLS$fitted.values)-mean(Y)

#sample covariance between X and residuals is zero
sum(OLS$residuals*X)

#sample covariance between fitted values and residuals is zero
sun(OLS$residuals*0LS$fitted.values)

Algebraic properties

um(OL

[1] 1.684319e-1
ttsamp
um(OLS

[1] 3.242961e-11

Big picture

Don't let anyone tell you the model is good because any of the following happens

1. Residuals add to zero
2. Fitted values mean is equal to data mean
3. Residuals are uncorrelated with x

4. If we plug in the average for x, we predict the sample average for y

These results are mechanical: Unrelated to how appropriate the model is or “causality”
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Properties of OLS estimators



Expected Value of OLS

o Mathematical statistics: How do our estimators behave across different samples of
data? On average, would we get the right answer if we could repeatedly sample?

o Find the expected value of the OLS estimators — the average outcome across all
possible random samples — and determine if we are right on average

o Leads to the notion of unbiasedness, a “desirable” characteristic for estimators.

E(B) =8 (5)

Don’t forget why we’re here

 The population parameter that describes the relationship between y and x is 3
* Goal: estimate 3 with a sample of data

o Jis an estimator obtained with a specific sample from the population

certainty and sampling variance

o Different samples will generate different estimates (3) for the “true” 3
o Thus, 3 a random variable (depends on random samples)

o Unbiasedness is the idea that if we could take as many random samples on y as
we want from the population, and compute an estimate each time, the average of
these estimates would be equal to 3

o But, this also implies that /3 has spread and therefore variance

Assumption 1 (Linear in Parameters)

o The population model can be written as

y=XB+u (6)

where § are the (unknown) population parameters
 We view X and u as outcomes of random variables; thus, y is random
o Our goal is to estimate /3

® uis the unobserved error. It is not the residual that we compute from the data!

Assumption 2 (Random Sampling)

o We have a random sample of size n, {(x;,y;) : i = 1,..., n}

* We know how to use this data to estimate 3 by OLS

Y- X+ U
Al

(ov'D  gpucacton

o In the population, the error term has zero mean given any value of X
E(uX) = E(u) = 0. @

—_—

o This is the key assumption for showing that OLS is unbiased, with the zero value
not being important once we assume E(u|X) does not change with X



Assumption 1-3

o We can compute the OLS estimates whether or not these assumption hold

 But we might not get a “good” estimate

o The sample outcomes on x; are not all the same value

® Same as saying the sample variance of {x; : i

., n} is not zero

o If the x; are all the same value, we cannot learn how x affects y

And that y = X3 + u (by assumption 1

o Therefore: 8 = (X'X)"1X/(XB + u (X'X) X"y
—
o E(B|X) =8+ 8X'X)X| E(u|X)
- A
=0 by assumption 3
e E(B|X)=8

&@({6 )?\33 IF

Each sample \eads G a dw’ferem estimate, /3

Some will be very close to the true values 3

Some could be very far from those values

If we repeat the experiment and average the estimates — very close to 3

But in a single sample, we can never know whether we are close to 3

Next: measure of dispersion (spread) in the distribution of the estimators

Repeat our simulations with different N

alpha=1 #intercept
beta=2 #slope
Reps=1000
for (Nobs in ¢(100,1000,10000)){
alpha, estinate=NULL
lbeca,esumace:NULL
for(r in 1:Reps){
X=runif (Nobs,-5,5)
= Y=alpha+beta*X+rnorn(Nobs)
« 0LS=1m(Y"X)
. Estimates=summary (OLS)$coef [,"Estimate"]
alpha_estimate=c(alpha_estimate ,Estimates[1])
beta_estimate=c(beta_estimate ,Estimates[2])

¥
hist(beta_estimate,freq=F,breaks=30,main="",1as 1)'
abline (v=beta,col=’red’,lwd=3,1lty=1)

Jal

ol ) jm”

:kad T 17/\7 M F-}—Q( )( -

I :



Reminder

o Errors are the vertical distances between observations and the unknown
Conditional Expectation Function. Therefore, they are unknown.

 Residuals are the vertical distances between observations and the estimated
regression function. Therefore, they are known.

Variance of OLS estimators

The correct variance estimation procedure is given by the structure of the data

o It is very unlikely that all observations in a dataset are unrelated, but drawn from
identical distributions (homoskedasticity)

o For instance, the variance of income is often greater in families belonging to top
deciles than among poorer families (heteroskedasticity)

o Some phenomena do not affect observations individually, but they do affect
groups of observations uniformly within each group (clustered data)

Assumption 5 (Homoskedasticity, or Constant Variance)

The error has the same variance given any value of the explanatory variable x:

Var(ulX) =% >0 (®)

where o2 is (virtually always) unknown

Because E(u]x) = 0 we can also write

Assumption 5 (Homoskedasticity, or Constant Variance)

V(ﬂ*\l +V/L
W) Nk

Var(y

The average or expected value of y is allowed to change with x, but the variance does
not change with x

Assumption 5 (Homoskedasticity, or Constant Variance)

Hgure 2.8
The sitple regression model under homoskedasticlty.

Variance of OLS estimators In matrix form the property that V(aW) ={a2)/ (W)
where a is constant and W/ is a random variable is written as

3 ¢
vﬂ/_v) = AV(W)A'

where A is a constant matrix and W is a random variable



Variance of OLS estimators

(\{ 5 >x@(' X)">_|
(X'X)1X'y . (X‘ Xy-l

o And that y = X3 + u (by assumption 1)
——

® We know

o Therefore: 3= (X'X) "X/ (X8 +u) = B+ (X'X)"1X'u

e V(B|X)= V(B X)

—_—
. =O0since it's constant!

fr(x'x) 1
—l =

V(u | X)
RSEED}

=02 by assumption 3

o V(B]X) = (X'X) XX (X'X) 7! = o?(X'X) !

(R X x (K R)

Estimating the Error Variance

o In the formula

v(i\x):(x’x) 1X'g2X(X'X) ! o m

—

we can compute (X’X)~! but we need to estimate o®

o Recall that

% = E(u?)

Estimating the Error Variance

o If we could observe the errors (u;) an unbiased estimator of ¢ would be
-

(10)

e But this not a feasible estimator because the u; are unobserved

e How about replacing each u; with its “estimate”, the OLS residual ;7
Estimating the Error Variance

U; can be computed from the data, but &; # u; for any i:

yi—xB=xB+u—xB

3-8

77— X
a— —

E(B) = B but the estimators differ from the population values in a given sample

Estimating the Error Variance

o Now, what about this as an estimator of 727

(11)

e It is a feasible estimator and easily computed from the data after OLS

o As it turns out, this estimator is slightly biased

Estimating the Error Variance

The estimator does not account for the restrictions on the residuals, used to obtain

\( westr e oNES

ixk,ﬂ, =0
i=1

There is no such restriction on the unobserved errors



ating the Error Variance

The unbiased estimator of o2 uses a degrees-of-freedom adjustment The residuals
have only n — k degrees-of-freedom (minus the k restrictions), not n

THEOREM: Unbiased Estimator of o2

Under Assumptions 1-5,

® Given @, we can now estimate V()
—_

o V(B) is a variance-covariance matrix (size k x k)
o
1
+ The diagonal clements of V(3) give us the variance of the estimators et > 9
75 The square root of the diagonal elements of the estimator of V(;) is usually o’ﬁ
called the standard errors (i.c., estimate of the standard deviation of the

estimator) %V. EsTeprAabon

Bringing the central limit theorem to play

o By some version of the central limit theorem: . az ' X
V(aXy:a
@ rg N(0,1) 5
8
B

—q oN(0,1)+ 8

-
—4 N(3,08)
o 05 =02(X'X)?
2

o Since we do not know o, we estimate it

* By some version of the central limit theorem + some statistical properties

B-8
AT d thk
g

B —d Tgtak+B

To keep things simple

otk — N(0,1) as (n— k) = o0
- N—

o So as long as your sample is large, we can keep thinking of normal distributions

31.7% of estimates will be more than 7 away from 3

B2 Pt B pro Be2o

4.55% of estimates will be more than 2




We can know learn something about the true
)

o We know § ~ N(8,7

o We want to find some interval on which 3 is likely to live:

standard o
(ta_xto be exact)

o Assuming we want symmetry (so § on each side), then / ’</2

1 (%) 53 with probability 1 — «

-

Confidence interval

_ 1y o e
* Say a = 5%, then &~ ($) = 1,96 and & (1 §) = 1.96 &mun@.ozs>
5 . %
o Then we know  is between with probability 95% amm(l‘ 0.025

o Generally speaking, confidence intervals are wider, the smaller a is

Simulations!

beta0=1 #intercept
betal=2 #slope

#Now lets repeat the process and see how close our estimates are
Reps=1000

Nobs—100 #number of obs

betad_estimate=NULL #vector to store estimates of betad

Tatw_sristachl vector 1 Stera imptas ot fatad
ExbimareinCIulLL fuettar vo. stase whesnes totimese s i €
LowsrCI-NULL #vector to store lower bound CI Al o
oparciHUL fecitar 15 piete speer baind G ¢ 5
Conridance-Toval,05 galaka
for(r in 1:Reps){
vt (o 5.5)
VCbata0ibata axirnorm (Nobs) fuse the DGP to ganerate dats
OrSm(v)
Eatimatesmsumnary (OLS)Scost [, Estimate”] fectimate
;:ksr commary(OLETa Cont | *51d. Erva*] Hutimase sigosburald
bata0.estimatemc(batad.sstimate .Extimates[1]) smssllp

ate Estimates(2]) mmer 8

12)+ saerm(Contidence sugl QRSE(2]  #Cgpridence intervals

LowerCice(LowerCl  bouns
CTEI® upperbound=Estimates [2)+anorm (1-Confidence level /3)~ Sda of
UpperClc(UpperCl, CI_Beta upperbound )

e DommI=(CI _Beta-lowerbound<beta & CI-Beta.upperbound>betal) #1s the true value in CI7

EstimatelnCl=c(EstimateInCl , DummylnCl)
—_—

}
mean( EstimaggloCl

First ten simulations (| ne is true

2.10

205

2.00
R

b
190 195
——
b
_ . 1,

~

N
.
-
o]
3

N
.

g\ 2026 - A X)C’]
JENUEE=) )= oF
Is B # Bo? k- ,3 =0 \ )
Bovs Hy: B Bo Y_VA Iotz 3’/& z0z0O

" o

Usually posed as testing Ho

Different way to look at this: is g is in the confidence interval of 57

Confidence interval depends on our choice of o

Pick largest a for which Sy is not in the confidence interval
sl ; =

This is called the valye

Largest probability of obtaining results at least as extreme as those actually
observed, under the assumption that the null hypothesis is correct
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beta0-1 #intercept
betal-2 #slope

#Now lets repeat the process and see how close our estimates are
Reps=1000

Nobs=1000 #number of obs

pualue _beta0=NULL #vector to store whether 0 is in CI
pualue_beta2-NULL #vector to store whether 2 is in CI
Confidence. level=0.05 #alpha

#use the DGP to generate data
Y=beta0+betalXirnorm (Nobs)

OLs=im (¥"X)

Estimates=summary (OLS)S coef [, " Estimate” | #estimate

SE-summary (OLS)$ coef [."Std. Error”] #estimate sigma_beta
0-estimate=c(betad_estimate , Estimates [1])

betal_estimate=c(betal_estimate , Estimates [2])

#Confidence intervals

CI_Beta_lowerbound~Estimates 2]+ anorm( Confidence _level /2)sSE[2]
CI_Beta_upperbound=Estimates [2] +anorm (1-Confidence - level /2)«SE[2]

#1s 0 in CI?

bvalue_beta0=c(pvalue _betad .(Cl_Beta_lowerbound<0 & CI_Beta_upperbound>0))
#1s 2 in CI?

bualue_betad=c(pvalue _beta2 (Cl_Beta_lowerbound<2 & Cl_Beta _upperbound>2))

mean( pualue beta0) 9%
meanf nvalie_heta2)
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Regression (matrix algebra) with a treatment dummy for the experimental case

= (XX)7Xy

What's going on behind the scenes?

Simple case

o Relationship between outcomeiand treatment indicator T;

~
® Regress the outcome on the treatment indicator, and a constant

s T
e Assume first N‘T units are treated (N¢c = N — Ny units are untreated)
———
T 11
1 T2 L 1 -
LR NT

e X=[1 Ty 1

1 Ty 10 M

(2
1 Tn 10
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Simple case

X'X) X'y =

Simple case
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Simple case

X)Xy

Nbv,—zt
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Simple case

(X'X)7Xly
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Simple case

Y
X'X)71X" e
(X'X)"I X'y (Vr v
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(XX) Xy (7 )
c

o The OLS estimate of the intercept is Y¢

o The coefficient of the treatment dummy is Y7 — Y¢

How precise are these estimates?

What is the variance of 3 = (X'X)~1Xy
Recall Y = X3+ u

B=(X'X)"1X'(XB + u)

o B=(X'X)IX'XB + (X'X) 1 X"u

B =B+ (X'X)"1X"u

If E(uX) =0

If V(¢) = 021 [Homoskedasticity] then
o V(B) = (X'X)"IX'a2IX(X'X)™! = &

Nr  —Nr
* V) = o mrww (7/\/ N )
——— T

V(B) = (X'X)"X'V(u)X(X'X)~* [matrix version of V(b +aY) = a2Y]

105

o Let Ny = kN and N¢ = (1 — k)N

o Since we don't know 02, use (Y — ¥)? = 515(@)? as an estimator

N=100 #Number of individuals
mu0=1

#Let’s create potential outcomes
Y0 <- rnorm(n=N, mean=mu0, sd=s.sq)
Y1 <- YO + beta

# control potential outcome

# treatment potential outcome

#Lets randomly assign people to treatment

Z.sim <- rbinom(n=N, size=1, prob=.5)

# Do a random assignment

Y.sim <- Y1#Z.sim + YO*(1-Z.sim) # Reveal outcomes according to assignment

OLS=1m(Y.sim"Z.sim)
summary (OLS)



How precise are these estimates?

andard error of the intercept is:

o Standard error of the slope is{y/o /%

o This should tell us how much our estimates vary on different samples

sqrt (sum(OLS$residuals~2)/(N-2)*(1/sum(Z.si )
sqrt (sum(OLS$residuals 2)/(N-2)*(}/(sum(Z.sin==0)*sum(Z.sin==1))))

Ne L

Simulations!

N=100 #Number of individuals
muo=1
s.sq=1
beta=0.2
Reps=1000
estimate_vector=NULL
for(r in 1:Reps){
Y0 <- rnorm(n=N, mean=mu0, sd

.sq) # control potential outcome
Y1 <- YO + beta # treatment potential outcome
Z.sim <- rbinom(n=N, size=1, prob=.5) # Do a random assignment
Y.sim <- Y1*Z.sim + YO*(1-Z.sim) # Reveal outcomes according to assignmen
0LS=1n(Y.sin"Z.sin)
beta_estimate=summary (OLS)$coef [2,1]
estimate_vector=c(estimate_vector ,beta_estimate)
¥
sd(estimate_vector)
110

* We let the computer do the calculations, which are tedious even for small n
e Good to know what's going on behind the scenes
o But | honestly do not care if you know how invert a matrix
o Important things in life to understand
o What 3 is (an estimator of a parameter we do not observe)
o What the standard error is (the standard deviation of the estimator)

o What a confidence interval is (an interval where we know with some probability the
true estimate lives)

What a p-value is (largest probability of obtaining results at least as extreme as
those actually observed, under the assumption that the null hypothesis is correct)

111

OLS Review

Linear algebra review
Law of iterated expectations

OLS basics

Conditional expectation function

“Algebraic” properties of OLS

Properties of OLS estimators

Regression (matrix algebra) with a treatment dummy for the experimental case
Frisch-Waugh-Lovell (FWL) theorem

Regression and causality

112

OLS Review

Frisch-Waugh-Lovell (FWL) theorem



theorem

Regressi

m— . v
© Assume your main multiple regression model of interest: ‘} X —l) IZESD
o /c . G

n Anatomy Theorem

yi = Bo+Bixii+ -+ Bixi + -+ + Brxi + € e

au
An auxiliary regression in which the variable xi; is regressed on all the remaining X XK w%l} Kl
Weo Xy Vo Xe, -y
vV,

independent variables

Y0 + Yh—1Xk—1i + Vh+1Xk+1i + -

S(
O Fag= =5 T 0 (ot el G thio SEdlEs (e ‘Zeé Y A | 4
ﬂe pa—r;met-er B1 can be rewritten as = oeF ]
=

VAT TNt T vl

1 is a scaled covariance with the actual data xor with the X; residual

b e~

%s@ Xe Tk

17+ Brxi + -+ Broxic + €

Two auxiliary regn
o i is regressed on all the remaining in

XI)= o Ve 1Xk—1i + Vb1 Xkig + o0+ Ve fi

bl

o yi is regressed on

+ QK Xki + 8i

0 + Ok 1Xk—17 + Q1 Xkt 17 T+
T e ——

7= y; — i residuals from auxiliary regressions
The parameter 31 can be rewritten as

f1i = x1; — X1 and

Cov(yi,x1i) _ Covl

Var(x1;) Var(%;

/1 is a scaled covariance with the actual data or with the residuals 115

Big pictu

=
|

o Regression anatomy theorem helps us interpret a single slope coefficient in a
multiple regression model by the aforementioned decomposition

o Also, help us understand “OLS” as a “matching estimator” (try to compare
observations that are alike in the Xs)
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Regression and causality

® When is ion causal? Wh the CEF that ion approxi (or
equals if the truth is linear) is causal

o Next: discuss one assumption under which the CEF has a causal interpretation

119



Potential outcomes - reminder

o A treatment (T) induces two “potential outcomes” for individual i
o The untreated outcome Yp;
e The treated outcome Y;

120

Potential outcomes - reminder

o A treatment (T) induces two “potential outcomes” for individual i
o The untreated outcome Yo;
o The treated outcome Yi;

o The observed outcome
Vi it =1
Yoi ifTi=0
= Yoi+(Vi—Yo)Ti
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Potential outcomes - reminder

o A treatment (T) induces two “potential outcomes” for individual i
o The untreated outcome Yo;
o The treated outcome Yi;

® The observed outcome
i fTi=1
Yoi if ;=0
Yoi + (Y1i = Yo)) Ti

Y, =

® The impact for any individual is §; = Y1; — Yoi

120

Potential outcomes - reminder

o A treatment (T) induces two “potential outcomes” for individual i
 The untreated outcome Yo;
o The treated outcome Yi;

e The observed outcome
Yot =1
Yoi ifTi=0
= Yoi+(Yi—Yo)Ti

o The impact for any individual is §; = Y3; — Yo;
o Fundamental problem: Never observe both potential outcomes for the same

o If we compare the outcomes of treated and untreated individuals:

EViITi=1)-E(Yi[T;=0) =

Observed difference

o We observe i = Yo; + (Y1i — Yoi) T
N it

mpact

o If we compare the outcomes of treated and untreated individuals:

E(Y|Ti=1)-E(YITi=0) = E(YulT;=1)-E(YalT;= 1)+
eSS =0)
Py

E(Yoil Ti = 1) - E(Y0i| Ti = 0)



o If we compare the outcomes of treated and untreated individuals:

E(YIT;

1) - E(YIT;

Observed difference

0) = E(YilTi=1)-E(Y|T; = 1)+

E(YolTi = 1) - E(Yo:|T; = 0)
= E(YulTi=1)-E(Yu|Ti=1)+
E(YolTi = 1) ~ E(Yoi|T; = 0)

selection bias

Unconfoundedness

Assumption (Unconfoundedness)
(Y, Yo) [T Ti | Xi

n wor

Lo

Once we condition on observable characteristics X;, the treatment T; is as good
as randomly assigned

n

Put differently, within the group of individuals with the same characteristics x;, we
have a randomized experiment

w

Yet another way of saying it is that conditional on x;, the selection bias disappears

is y and should always be discussed!
P

® In order to exploit the unconfoundedness assumption, for all values of x; we need
to have both treated and untreated units

o Otherwise, either no treatment or no control group for some values of x;

o Propensity score, which gives us the probability of T=1 given X; = x
————

p(x) = P(Ti =

® p(x) =1 means that there are no control units (everyone is treated)
o p(x) = 0 means that there are no treated units (no one is treated)

Assumption (Overlap)
0 < p(x) < 1 for all x

o In contrast to unconfoundedness, overlap is testable since we can compute p(x)
from the data
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Identification under unconfoundedness
o How can we identify treatment effects under unconfoundedness?
o Define the conditional mean difference as
ZD'X}: Yil I E[Yi| T
o Conditional on x; = x, we can use the same arguments as the experimental case:
o \="E[Y; [ li=Lx=X]=E[Y; | Ti=0,x;
= E[Yyl|x
= E[Yii— Yoi | xi=x]
—_—
» The second equality is well-defined for every x by the overlap-aseumption
e The third equality is by unconfoundedness
124

Identification under unconfoundedness

he ATE for individuals with charateristics x; = x

o We can get the (unconditional) ATE as

% ELEIY — Yor | X1
= E[Yii— Yol
E— Yol
125

screte covariates

o The results so far are rather abstract.

e It is easier to understand the results with discrete covariates x;
pA

e In this case,
t A’\E 2EM - Yol =D R0s=x = 4 g,

—_—
e Suppose x; is binary. In this case the formula becomes:

X =1 fract. with x; =1
] P =0

mean diff. Tn group with x; = 0 fract. with x; =0

E[Yii— Yoi] =
—~———
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An example: causal effect of gender on admissions

Major  Admissions _ Admit » Deny Total

® Unc gender is ind dent of admission outcomes conditional on
major

127

An example: causal effect of gender on admissions

SO%’ _ 7§’/a —pA23p7
Ve
7 0% t

— 400/600 — 50/100 = 0.166
400/600 - 50/100 = 0.166,
— 100/400 — 300/400 = —0.5

P(M; = A) = (600 + 100)/(1500) = 0466~

P(M; = B) = (400 + 400)/15@: 0.533
S = ATE = 0.167 - 0.47 + (=0.5) - 0.533 = —0.19
P e = =
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Regression and causality

® Under unconfoundedness, the CEF E[Y; | T;, Xj] has aWﬂn_
—_—

o Thus, a linear regression model has an (approximate) causal interpretation under
unconfoundedness.
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Regression and causality

o If the population regression model is:

Yi =0T+ X3+ uj

constant across x and thus ATE = 0
—

A
&

What if J, is not constant?

Major ~ Admiser tal

Simulations!

#Lets create the data

#600 men in A, 400 men in B, 100 women in A, 400 women in B
# otciaerorit e Nl albRasE e et O

Data=data.frame (AdminExact=-c(zep(L,400) ,rep(0,200),

s
rep(1,100),7ep(0,300),

rep(1,300),rep(0,100)),
Major=c(rep(1.600).rep(0,400),rep(1,100),1ep(0,400)),

ep {0,200,
Treatment=c(rep (1,600, rep(1,400),7ep(0,100),rep(0,400)))
2216000 . rep (1. 2005, 7ep(0,100),1ep (D, 200))

summary (1n (4dminExacy~Treatment+Major , gubses {fajor ata=Data))
sumnary (1m(AdminExact~ Treatment+Major , subset=Naiares0,data=Data))
snmmary(1m(Adm1nExact‘Treacmenc,data:Daba))

eI R O R
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What if J, is not constant?

o Estimate
Y, =0T+ X/B+u
o Regression yields § = —0.3 # ATE = —0.19

o In general, we get the Tollowing weighted average

® Regression produces a treatment-variance weighted average of d, (proof in Angrist

and Pischke MHE 3

o In our case 0%, :
600
70

2 =
® 07 Major=A = 700 700 |
. o2 _ 400400
TiiMajor=6 = 800800 |
133
What if i, is not constant?
® Therefore:
50100 100 00 300 o
P16 755 700 % Cosf_B5 %
> %
7 = A TTiMsjor=p P(Major = A) + 08 o7, u, =B)
07 Major AT (Major = A) + 07 .00 P( B)
= 3
SE
134

o Beware of what OLS gives you

o Still causal interpretation, even if d, is not constant
-

o Weighted average of different oy

o Weights depend on the variance!

Beyond regression

o Regression is only one method to obtain causal effects under uncounfoundedness
o Other popular methods are: matching and inverse probability weighting

+ Assumption are the same, they generally yield similar results (but implicit weights
are different)

o A great review is: Recent Developments in the Econometrics of Program
Evaluation by Imbens and Wooldrige (2009)

o Check this out: http://www.nber.org/minicourse3.html

Some important remarks

(based on Cyrus Samii’s lecture notes)

For most researchers, the math obscures the assumptions. Without an ex-
periment, a natural experiment, a discontinuity, or some other strong design,
no amount of econometric or statistical modeling can make the move from
correlation to causation persuasive. (Sekhon, 2009, p. 503)

o At the end of the day, OLS (and other matching/weighting estimators) “mop up'
imbalances that makes CIA plausible
o Thought experiment necessary to test CIA:
e How could it be that two units that are identical with respect to all meaningful
background factors nonetheless receive different treatment?
® Your answer to this question is your source of identification
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