Lecture 7 - OLS review
Thursday, September 09, 2021 3:58 PM

펼
Lecture 7 -
oLS review

OLS Review

Mauricio Romero

OLS Review

Linear algebra review
Law of iterated expectations
OLS basics
Conditional expectation function
"Algebraic" properties of OLS
Properties of OLS estimators
Regression (matrix algebra) with a treatment dummy for the experimental case
Frisch-Waugh-Lovell (FWL) theorem
Regression and causality

```
OLS Review
    Linear algebra review
    Law of iterated expectations
    OLS basics
    Conditional expectation function
    "Algebraic" properties of OLS
    Properties of OLS estimators
    Regression (matrix algebra) with a treatment dummy for the experimental case
    Frisch-Waugh-Lovell (FWL) theorem
    Regression and causality
```


Basic matrix operations

- $k\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]=\left[\begin{array}{l}k a_{1} \\ k a_{2}\end{array}\right]$
- $\left[\begin{array}{ll}a & b\end{array}\right]\left[\begin{array}{l}c \\ d\end{array}\right]=[a c+b d]$
- $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
- $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

Matrix multiplication

- Let $A_{n \times m}$ and $B_{m \times k}$, then $(A B)_{n \times k}$
- Let $A_{n \times m}$ and $B_{m \times k}$, then ($B A$) "conformability error"
$\left(\right.$ Bmak $\left.^{\text {man }}\right)\left(A_{\Delta \times m}\right)$

Transpose and inverse of a matrix

- Transpose of Product $(A B)^{\prime}=B^{\prime} A^{\prime}$ and $(A B C)^{\prime}=C^{\prime} B^{\prime} A^{\prime}$
- Inverse of Product $(A B)^{-1}=B^{-1} A^{-1}$ and $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$
- Transpose of an inverse equals inverse of a transpose $\left(D^{-1}\right)^{\prime}=\left(D^{\prime}\right)^{-1}$

OLS Review

Linear algebra review
Law of iterated expectations
OLS basics
Conditional expectation function
"Algebraic" properties of OLS
Properties of OLS estimators
Regression (matrix algebra) with a treatment dummy for the experimental case
Frisch-Waugh-Lovell (FWL) theorem
Regression and causality

OLS Review

Law of iterated expectations
OLS basics
Conditional expectation function
"Algebraic" properties of OLS
Properties of OLS estimators
Regression (matrix algebra) with a treatment dummy for the experimental case
Frisch-Waugh-Lovell (FWL) theorem
Regression and causality

Law of Iterated Expectations (LIE): A useful trick

- Formally: The unconditional expectation of a random variable is equal to the expectation of the conditional expectation of the random variable conditional on some other random variable

$$
\mathbb{E}(Y)=\mathbb{E}(\mathbb{E}[Y \mid X])
$$

- Informally: the weighted average of the conditional averages is the unconditional average

Example of LIE

- Say want average wage but only know average wage by education level
- LIE says we get the former by taking conditional expectations by education level and combining them (properly weighted)

```
        E [Wage] = \mathbb{E}(\mathbb{E}[\mathrm{ Wage EEducation] })
            = }\mp@subsup{\sum}{\mp@subsup{\mathrm{ Educationi}}{i}{}}{}\operatorname{Pr}(\mp@subsup{\mathrm{ Education }}{i}{})\cdotE[\mp@subsup{\mathrm{ Wage }}{}{[\mp@subsup{E}{ducation}{i}}
```

Person	Gender	IQ
1	M	120
2	M	115
3	M	110
4	F	130
5	F	125
6	F	120

- $\mathrm{E}[\mathrm{Q} \mathrm{Q}]=120$
- $\mathrm{E}[\mathrm{QQ} \mid$ Male $]=115 ; \mathrm{E}[\mathrm{Q} \mid$ Female $]=125$
- LIE: E ($\mathrm{E}[\mathrm{IQ} \mid$ Sex $])=(0.5) \times 115+(0.5) \times 125=120$

$\rightarrow=\sum_{y}^{x} y \sum_{x} p(x, y) \quad \longrightarrow \sum_{y} z_{x} y P(x, y)$
12
LIE: Proof for the continuous case

$$
\begin{aligned}
\mathbb{E}[\mathbb{E}(Y \mid X)] & =\int \mathbb{E}(Y \mid X=u) g_{x}(u) d u \\
& =\int\left[\int t f_{y \mid x}(t \mid X=u) d t\right] g_{x}(u) d u \\
& =\iint t f_{y \mid x}(t \mid X=u) g_{x}(u) d u d t \\
& =\int t\left[\int f_{y \mid x}(t \mid X=u) g_{x}(u) d u\right] d t \\
& =\int t\left[f_{x, y} d u\right] d t \\
& =\int t g_{y}(t) d t \\
& =\mathbb{E}(y)
\end{aligned}
$$

OLS Review

Linear algebra review
Law of iterated expectations
OLS basics
Conditional expectation function
"Algebraic" properties of OLS
Properties of OLS estimators
Regression (matrix algebra) with a treatment dummy for the experimental case Frisch-Waugh-Lovell (FWL) theorem
Regression and causality

```
OLS Review
    OLS basics
    Conditional expectation function
    "Algebraic" properties of OLS
    Properties of OLS estimators
    Regression (matrix algebra) with a treatment dummy for the experimental case
    Frisch-Waugh-Lovell (FWL) theorem
    Regression and causality
```


OLS - As minimizing residuals

- Data with n observations and two variables: $\left(x_{1}, \ldots x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$
- Find the line $\left(\widehat{\beta_{0}}+\widehat{\beta}_{1} x\right)$ that best fits the data
- $\widehat{y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i}$ is the fitted value for i
- The residual is $\hat{u}_{i}=y_{i}-\hat{y}_{i}$
- Goal: minimize residuals or distance from the line (fitted values) to the data

ILS - As minimizing residuals

- We don't care if the residual \widehat{u}_{i} is positive or negative, we want it to be small
- So we square it: \widehat{u}_{i}^{2}
- Why not the absolute value? Good statistical reasons + harder to work with \mid. \mid
- We want all the mistakes to be small, so we really want to minimize $\sum_{i=1}^{n} \widehat{u}_{i}^{2}$

$$
\min _{\hat{\beta}_{0}, \hat{\beta}_{1}} \sum_{i=1}^{n} \hat{u}_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\left(\hat{\beta}_{0}+\widehat{\beta}_{1} x_{i}\right)^{2}\right.
$$

- Using calculus (deriving with respect to $\widehat{\beta_{0}}, \widehat{\beta_{1}}$ and equating to zero):

$\widehat{\hat{\beta}_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\overline{x_{i}}\right)\left(y_{i}-\overline{y_{i}}\right.}{\sum_{i=1}^{i}\left(x_{i}-\bar{x}_{i}\right)^{2}}}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\overline{x_{i}}\right)\left(y_{i}-\overline{y_{i}}\right)}{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\overline{x_{i}}\right)^{2}}=\frac{\text { Sample covariance }(x, y)}{\text { Sample variance }(x)}$ ${\hat{\beta_{0}}}^{*}=\overline{y_{i}}-\hat{\beta}_{1} \overline{x_{i}}$

18

Visual tour of OLS

- https://ryansafner.shinyapps.io/ols_estimation_by min_sse/
-https://seeing-theory brown.edu/regression-analysis/ index.html\#section1
- https://setosa.io/ev/ordinary-least-squares-regression/
- https://mgimond.github.io/Stats-in-R/regression.html

OLS as an estimator

- There is a population with two random variables x and y
- We take a random sample of size $n:\left(x_{1}, x_{2}, \ldots x_{n}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$
- We would like to see how y varies with changes in x
- What if y is affected by factors other than x ?
- What is the functional form connecting these two variables?
- If interested in causal effect of x on y, how to distinguish from mere correlation?

OLS as an estimator of the DGP parameters

- Assume the data generating proces (DGP)s is:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+u_{i}
$$

That is, this model holds in the population

- Not only x_{i} affects y_{i}, u_{i} (called the error term) also does
- Do not confuse u_{i} with \hat{u}_{i}
- We assume there is a linear relationship between y_{i} and x_{i}
- We never observe β_{0} and β_{1}

Inference

- Goal: Estimate unknown parameters
- To approximate parameters, we use an estimator, which is a function of the data
- Thus, estimator is a random variable (it is a function of a random variable)
- Infer something about the parameters from the distribution of the estimator

Important notation

Based on this tweet: https://twitter.con/nickchk/status/1272993322395567888

- Greek letters (e.g., μ) are the truth (ie., parameters of the true DGP)
- Greek letters with hats (e.g., $\hat{\mu}$) are estimates (ie., what we think the truth is)
- Non-Greek letters (e.g., X) denote sample/data
- Non-Greek letters with lines on top (e.g., \bar{X}) denote calculations from the data
- We want to estimate the truth, with some calculation from the data $(\hat{\mu}=\bar{X})$
- Data \longrightarrow Calculations \longrightarrow Estimate $\underset{\text { Hopefully }}{\longrightarrow}$ Truth
- Example: $\mathrm{X} \longrightarrow \bar{X} \longrightarrow \widehat{\mu} \underset{\text { Hopefully }}{\longrightarrow}{ }^{\mu}$

OLS as an estimator of the DGP parameters

- Assume the data generating process is:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+u_{i}
$$

- Also assume $\mathbb{E} u_{i}=0$
- Without loss of generality

We can just change the intercept to force $\mathbb{E} u_{i}=0$

- For example if $\mathbb{E} \boldsymbol{u}_{i}=\alpha_{0}$
- Redefine model to $y_{i}=\underbrace{\beta_{0}+\alpha_{0}}_{\text {new intercept }}+\beta_{1} x_{i}+\underbrace{u_{i}-\alpha_{0}}_{\text {new error term }}$
- Assume mean independence $\mathbb{E}\left(u_{i} \mid x_{i}\right)=\mathbb{E}\left(u_{i}\right)$ for all values x

$$
\begin{aligned}
& \text { Implies that } \mathbb{E}\left(u_{j} \mid x\right)=\mathbb{E}\left(u_{i}\right)=0 \\
& \text { Implies that } \mathbb{E}\left(u_{j} x_{i}\right)=\mathbb{E}\left(\mathbb{E}\left(u_{i} \mid x_{i}\right)\right)=0
\end{aligned}
$$

OLS as an estimator of the DGP parameters

- $\mathbb{E}\left(y_{i} \mid x_{i}\right)$: population regression function or conditional

E $\left(\beta_{0}+B_{i} X_{i}+U_{i} \mid X_{i}\right)$
function or conditional expectation function

- By our assumptions:

$$
\begin{aligned}
& \text { - } \mathbb{E}\left(u_{i} \mid x_{i}\right)=\begin{array}{l}
\mathbb{E}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)=0 \\
\text { - } \mathbb{E}\left(u_{i} x_{i}\right)=\mathbb{E}\left(x\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)\right)=0
\end{array} \text { }
\end{aligned}
$$

- These two conditions determine β_{0} and β_{1}

OLS as an estimator of the DGP parameters

First equation

$$
\begin{aligned}
\mathbb{E}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right) & =0 \\
\mathbb{E} y_{i}-\beta_{0}-\beta_{1} \mathbb{E} x_{i} & =0 \\
\sqrt{\mathbb{E} y_{i}-\beta_{1} \mathbb{E} x_{i}} & =\beta_{0}
\end{aligned}
$$

OLS as an estimator of the DGP parameters

$$
\begin{aligned}
& \begin{array}{c}
\beta_{1}\left(\mathbb{E E}^{\left(x_{i}^{2}-2 \mathbb{F}^{2}\left(x_{i}\right)+\mathbb{E}^{2}\left(x_{i}\right)\right)}\right. \\
\beta_{1}\left(\mathbb{E}\left(x_{i}^{2}-E^{2}\left(x_{i}\right)\right)\right.
\end{array}
\end{aligned}
$$

OLS as an estimator of the DGP parameters

- But we don't have x and y, nor do we know $\mathbb{E} y_{i}$ or $\mathbb{E} x_{i}$
- We only have a random sample of size $n:\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$

$$
\begin{aligned}
& \text { The sample analogs: } \\
& \text { - } \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)=0 \\
& \text { • } \frac{1}{n} \sum_{i=1}^{n} x_{i}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)=0
\end{aligned}
$$

OLS as an estimator of the DGP parameters

First equation

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\widehat{\beta}_{1} x_{i}\right) & =0 \\
\frac{1}{n} \sum_{i=1}^{n} y_{i}-\widehat{\beta_{0}}-\hat{\beta}_{1} \frac{1}{n} \sum_{i=1}^{n} x_{i} & =0 \\
\overline{y_{i}}-\widehat{\beta_{0}}-1 \hat{\beta}_{1} \overline{x_{i}} & =0 \\
\bar{y}_{i}-\hat{\beta}_{1} \overline{x_{i}} & =\widehat{\beta}_{0}
\end{aligned}
$$

OLS as an estimator of the DGP parameters

- Formulas are the same as "minimizing residuals"
- Show the OLS coefficients as estimator of the population parameters (β_{0} and β_{1})
- Some remarks:
- Can only estimate if the sample variance of x_{i} is not zero
- In other words, if x_{i} is not constant across all values of $;$
- Intuitively, the variation in x is what permits us to identify its impact in y

Multiple regression - notation

- Consider the multiple linear regression model
$y_{i}=x_{i}^{\prime} \beta+u_{i}$
where $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{K}\right)^{\prime}$ and $x_{i}=\left(1, \ldots, x_{K}\right)^{\prime}$
- β is of size $(k \times 1)$
- $x_{i}^{\prime} \beta$ is of size $(1 \times k)(k \times 1)=1 \times 1$
- Equivalent
- β is of size $(k \times 1)$
- X is of size $(n \times k)$
- $X \beta$ is of size $(n \times k)(k \times 1)=n \times 1$

We let the computer do the calculations, which are tedious even for small n

- Good to know what's going on behind the scenes
- But I honestly do not care if you know how invert a matrix

Simulations!

```
alpha=1 #intercept
beta=2 #slope
Nobs=10000 #how many observations?
k=runif (Nobs, -5,5)
#use the DGP to benerate da
Y=alpha+beta*X+rnorm(Nobs)
0r.ST1m(Y~x)
summary (0LS)
```


Distribution of estimate of $\widehat{\beta}$

OLS Review
Linear algebra review
Law of iterated expectations
OLS basics
Conditional expectation function
"Algebraic" properties of OLS
Properties of OLS estimators
Regression (matrix algebra) with a treatment dummy for the experimental case
Frisch-Waugh-Lovell (FWL) theorem
Regression and causality

OLS Review
Linear algebra review
Law of iterated expectations
OLS basics
Conditional expectation function
"Algebraic" properties of OLS
Properties of OLS estimators
Regression (matrix algebra) with a treatment dummy for the experimental case
Frisch-Waugh-Lovell (FWL) theorem
Regression and causality

Conditional expectation function (CEF)

- Assume we are interested in the returns to schooling
- Summarize the effect of schooling on wages with the $\operatorname{CEF}\left(\mathbb{E}\left(y_{i} \mid x_{i}\right)\right)$
- The CEF is the expectation (i.e, population average) of y_{i} with x_{i} held constant
- $\mathbb{E}\left(y_{i} \mid x_{i}\right)$ provides a reasonable representation of how y changes with x
- Because x_{i} is random, $\mathbb{E}\left[y_{i} \mid x_{i}\right]$ is random
- Sometimes work with a particular value of the CEF (e.g., $\mathbb{E}\left[y_{i} \mid x_{i}=12\right]$)
- $y_{i}=\mathbb{E}\left(y_{i} \mid x_{i}\right)+u_{i}$ where

1. u_{i} is mean independent of x_{i}; that is $\mathbb{E}\left(u_{i} \mid x_{i}\right)=0$
2. u_{i} is uncorrelated with any function of x_{i}

- In words: any random variable, y_{i}, can be decomposed into two parts: the part that can be explained by x_{i} and the part left over that cannot be explained by x_{i}
- Proof is in Angrist and Pischke (ch. 3)
${ }^{42}$

- In words: The CEF is the minimum mean squared error predictor of y_{i} given x_{i}
- Proof is in Angrist and Pischke (ch. 3)

Property 3: Best linear approximation

- The population regression is the best linear approximation to the true nonlinea CEF in a mean squared error sense

$$
\beta=\mathbb{E}\left[x_{i} x_{i}^{\prime}\right]^{-1} \mathbb{E}\left[x_{i} y_{i}\right]=\arg \min _{b} \mathbb{E}\left[\left(\mathbb{E}\left[y_{i} \mid x_{i}\right]-x_{i}^{\prime} b\right)^{2}\right]
$$

- In words: even if the true CEF is nonlinear (for example, $E\left[y_{i} \mid x_{i}\right]=\log \left(x_{i}\right)$), regression is still a good approximation to the truth

Why linear regression may be of interest (summary)

- If the CEF is linear. Then the population regression is it
- Then it makes the most sense to use linear regression to estimate it
- Linear regression may be interesting even if the underlying CEF is not linear
- $\mathbb{E}\left(y_{i} \mid x_{i}\right)$, is the minimum mean squared error predictor of y_{i} given x_{i} in the class of all functions of x_{i}
- The population regression function is the best we can do in the class of all linear functions to approximate $\mathbb{E}\left(y_{i} \mid x_{i}\right)$

Big picture

1. Regression provides the best linear predictor for the dependent variable in the same way that the CEF is the best unrestricted predictor of the dependent variable
2. If we prefer to think of approximating $\mathbb{E}\left(y_{i} \mid x_{i}\right)$ as opposed to predicting y_{i}, even if the CEF is nonlinear, regression provides the best linear approximation to it

ols Review

Linear algebra review
Law of iterated expectations
OLS basics
Conditional expectation function
"Algebraic" properties of OLS
Properties of OLS estimators
Regression (matrix algebra) with a treatment dummy for the experimental case Frisch-Waugh-Lovell (FWL) theorem

Regression and causality

Linear algebra review
Law of iterated expectations.
OLS basics
Conditional expectation function
Algebraic" properties of OLS
Properties of OLS estimators
\qquad Frisch-Waugh-Lovell (FWL) theorem Regression and causality

- This means the OLS residuals always add up to zero, by construction,

The mean of the fitted values is the mean of the data

Because $\underline{y}_{i}=\widehat{y}_{i}+\underbrace{\hat{u}_{i}}$ by definition,

$$
\begin{aligned}
& y_{i}=E\left(y_{i} \mid x_{i}\right)+U_{i} \\
& \frac{U_{i} \neq \hat{U}_{i}}{\left(\hat{U}_{i}=y_{i}-\hat{y}_{i}\right.}
\end{aligned}
$$

Sample correlation between x_{i} and residuals is zero

The sample covariance (and therefore the sample correlation) between the explanatory variables and the residuals is always zero:

Bringing things together

Because the \hat{y}_{i} are linear functions of the x_{i}, the fitted values and residuals are uncorrelated, too:

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \widehat{y}_{i} \widehat{u}_{i}=0 \tag{3}
\end{equation*}
$$

The point (\bar{x}, \bar{y}) is always on the OLS regression line

If we plug in the average for x, we predict the sample average for y :

$$
\bar{y}=\underline{\widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{x}}
$$

(see formula for $\widehat{\beta}_{0}$)


```
-i)}\textrm{X=runif(Nobs, -5,5
    #use the DGP to generate data
    Y=10+2*X~2+rnorm(Nobs)}
    OLS=1m(Y*x)
    4 Plot(X,Y,bty="L")
# (1)
#7 points(mean(x),mean(y),pch=19,col=4,cex=1,5)
    #Not a great 1it\ldots..yet
    #residual add to zero
    sum(0LS&residuals)
    #mean of fitted values is the mean of true values
    *)
    sample covariance between X and resid
    *sample covariance between fitted values and residuals is zero
    sum(0LSsresiduals*OLSsfitted.values)
```


Big picture

[^0]
OLS Review

Linear algebra review
Law of iterated expectations
OLS basics
Conditional expectation function
"Algebraic" properties of OLS
Properties of OLS estimators
Regression (matrix algebra) with a treatment dummy for the experimental case
Frisch-Waugh-Lovell (FWL) theorem
Regression and causality

OLS Review

Law of iterated expectations
ols basics
Conditional expectation function

Properties of OLS estimators

Regression (matrix algebra) with a treatment dummy for the experimental case
Frisch-Waugh-Lovell (FWL) theorem
Regression and causality

- Mathematical statistics: How do our estimators behave across different samples of data? On average, would we get the right answer if we could repeatedly sample?
- Find the expected value of the OLS estimators - the average outcome across all possible random samples - and determine if we are right on average
- Leads to the notion of unbiasedness, a "desirable" characteristic for estimators.

$$
\mathbb{E}(\widehat{\beta})=\beta
$$

(5)

Don't forget why we're here

- The population parameter that describes the relationship between y and x is β

Goal: estimate β with a sample of dat

- $\widehat{\beta}$ is an estimator obtained with a specific sample from the population

Uncertainty and sampling variance

- Different samples will generate different estimates ($\widehat{\beta}$) for the "true" β
- Thus, $\widehat{\beta}$ a random variable (depends on random samples)
- Unbiasedness is the idea that if we could take as many random samples on y as we want from the population, and compute an estimate each time, the average of these estimates would be equal to β
- But, this also implies that $\widehat{\beta}$ has spread and therefore variance

Assumption 1 (Linear in Parameters)

- The population model can be written as
where β are the (unknown) population parameters
- We view X and u as outcomes of random variables; thus, y is random
- Our goal is to estimate β
- u is the unobserved error. It is not the residual that we compute from the data!

Assumption 2 (Random Sampling)

- We have a random sample of size $n,\left\{\left(x_{i}, y_{i}\right): i=1, \ldots, n\right\}$
- We know how to use this data to estimate β by OLS

Assumption 3 (Zero Conditional Mean)

- In the population, the error term has zero mean given any value of X.
- We can compute the OLS estimates whether or not these assumption hold
- But we might not get a "good" estimate

Assumption 4 (Sample Variation in the Explanatory Variable)

- The sample outcomes on x_{i} are not all the same value
- Same as saying the sample variance of $\left\{x_{i}: i=1, \ldots, n\right\}$ is not zero
- If the x_{i} are all the same value, we cannot learn how x affects y

- Some will be very close to the true values β
- Some could be very far from those values
- If we repeat the experiment and average the estimates \rightarrow very close to β

But in a single sample, we can never know whether we are close to A

- Next: measure of dispersion (spread) in the distribution of the estimators

Repeat our simulations with different N

```
alpha=1 #intercept
beta=2 #slop
eps=1000
for(Nobs in c(100,1000,10000)) f
| latpha_estimate=NUL
for(r in 1:Reps),
    or(r in 1:Reps){
    X=runif(Nobs, -5,5)
    -0LS=1m(Y-X)
    Estimates=summary (OLS)$coef[,"Estimate"]
        alpha_estimate=c(alpha_estimate, Estimates [1]
        beta_estimate=c(beta estimate, Estimates[2])
    \ hist(beta_estimate,freq=F, breaks=30,main=" ", las=1)
```


Repeat our simulations with different N - Look at the x -axis scale

Errors are the vertical distances between observations and the unknown
Conditional Expectation Function. Therefore, they are unknown

- Residuals are the vertical distances between observations and the estimated regression function. Therefore, they are known.

Variance of OLS estimators

The correct variance estimation procedure is given by the structure of the data

- It is very unlikely that all observations in a dataset are unrelated, but drawn from identical distributions (homoskedasticity)
- For instance, the variance of income is often greater in families belonging to top deciles than among poorer families (heteroskedasticity)
- Some phenomena do not affect observations individually, but they do affect groups of observations uniformly within each group (clustered data)

Assumption 5 (Homoskedasticity, or Constant Variance)

The error has the same variance given any value of the explanatory variable x :

$$
\operatorname{Var}(u \mid X)=\sigma^{2}>0
$$

where σ^{2} is (virtually always) unknown
Because $\mathbb{E}(u \mid x)=0$ we can also write

Assumption 5 (Homoskedasticity, or Constant Variance)

Under the our assumptions

The average or expected value of y is allowed to change with x, but the variance does not change with x

Assumption 5 (Homoskedasticity, or Constant Variance)

Variance of OLS estimators In matrix form the property that $V(a W)=a^{2}(W)$
where a is constant and W is a random variable is written as:

$$
\begin{aligned}
& \text { a random variable is } w \\
& v(\mathbb{L} W)=A V(W) A^{\prime}
\end{aligned}
$$

where A is a constant matrix and W is a random variable
-We know $\widehat{\widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y}$

- And that $y=X \beta+u$ (by assumption 1)
- Therefore: $\widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+u)=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u$

- $v(\widehat{\beta} \mid X)=\left(X^{\prime} X\right)^{-1} X^{\prime} \sigma^{2} X\left(X^{\prime} X\right)^{-1}=\sigma^{2}\left(X^{\prime} X\right)^{-1}$
$\sigma^{2}\left(x^{2} x^{-1} x^{\prime} x\left(x^{2} x\right)^{-1}\right.$
Estimating the Error Variance
- In the formula
$V(\widehat{\widehat{B}} \mid X)=\left(X^{\prime} X\right)^{-1} X^{\prime} \sigma^{2} X\left(X^{\prime} X\right)^{-1}$

- Recall that

$$
\sigma^{2}=\mathbb{E}\left(u^{2}\right)
$$

Estimating the Error Variance

- If we could observe the errors $\left(u_{i}\right)$ an unbiased estimator of σ^{2} would be

- But this not a feasible estimator because the u_{i} are unobserved
- How about replacing each u_{i} with its "estimate", the OLS residual \widehat{u}_{i} ?

Estimating the Error Variance
\hat{u}_{i} can be computed from the data, but $\hat{u}_{i} \neq u_{i}$ for any i :

$$
\begin{aligned}
\hat{u}_{i}=y_{i}-x_{i}^{\prime} \widehat{\beta} & =x_{i}^{\prime} \beta+u_{i}-x_{i}^{\prime} \hat{\beta} \\
& =u_{i}-(\widehat{\beta}-\beta) x_{i}
\end{aligned}
$$

$\mathbb{E}(\widehat{\beta})=\beta$ but the estimators differ from the population values in a given sample

Estimating the Error Variance

- Now, what about this as an estimator of σ^{2} ?

(11)
- It is a feasible estimator and easily computed from the data after OLS
- As it turns out, this estimator is slightly biased

Estimating the Error Variance

The unbiased estimator of σ^{2} uses a degrees－of－freedom adjustment The residuals have only $n-k$ degrees－of－freedom（minus the k restrictions），not n

$$
\widehat{\sigma}^{2}=\frac{\sum_{i=1}^{n} \hat{u}_{i}^{2}}{(n-k)}
$$

THEOREM：Unbiased Estimator of σ^{2}
Under Assumptions 1－5，

$$
\mathbb{E}\left(\hat{\sigma}^{2}\right)=\sigma^{2}
$$

－Given $\widehat{\sigma}$ ，we can now estimate $V(\widehat{\beta})$
－$V(\widehat{\beta})$ is a variance－covariance matrix（size $k \times k$ ）
－The diagonal elements of $V(\widehat{\beta})$ give us the variance of the estimators $\widehat{\beta}$
－$\widehat{\sigma}$ ：The square root of the diagonal elements of the estimator of $V(\widehat{\beta})$ is usually
called the standard errors（i．e．，estimate of the standard deviation of the
estimator）
$\begin{aligned} & \text { Bringing the central limit theorem to play } \\ & \text {－By some version of the central limit theorem：} \\ & \hat{\beta}-\beta\end{aligned} \quad V(a x)=a^{2} V(x)$

$$
\begin{array}{rlrl}
\sigma-\hat{\beta} & \rightarrow_{d} & N(0,1) \\
\hat{\beta} & \rightarrow_{d} & \sigma_{\boldsymbol{\beta}} N(0,1)+\beta & N\left(\beta, \sigma_{\hat{\beta}}^{2}\right)
\end{array}
$$

－$\sigma_{\beta}=\sigma^{2}\left(X^{\prime} X\right)^{-1}$
－Since we do not know σ^{2} ，we estimate it
$\sigma \frac{\sigma}{\alpha}=\hat{\sigma}^{2}\left(X^{\prime} X\right)^{-1}$
By some version of the central limit theorem + some statistical properties

$$
\begin{aligned}
& \frac{\widehat{\beta}-\beta}{\widehat{\sigma}_{\hat{\beta}}} \rightarrow_{d} t_{n-k} \\
& \widehat{\beta} \rightarrow_{d} \widehat{\sigma}_{\hat{\beta}} t_{n-k}+\beta
\end{aligned}
$$

To keep things simple

```
    - thn-k}->N⿱一𫝀口, N(0,1) as (n-k)->
```

－So as long as your sample is large，we can keep thinking of normal distributions

$$
\widehat{\beta} \approx N\left(\beta, \overrightarrow{\sigma_{\hat{\beta}}}\right)
$$

31.7% of estimates will be more than $\widehat{\sigma_{\widehat{\beta}}}$ away from β

4.55% of estimates will be more than $2 \widehat{\sigma_{\beta}}$ away from β

We can know learn something about the true β

- We know $\widehat{\beta} \sim N\left(\beta, \widehat{\sigma_{\hat{\beta}}}\right)$
- We want to find some interval on which β is likely to live
$P(\underset{\sim}{\leq} \leq \beta \leq \underline{b})=\underline{1-\alpha}$

Assuming we want symmetry (so $\frac{\alpha}{2}$ on each side), then:
-(${ }^{\frac{\beta}{\sigma_{B}^{-}}}{ }^{-2}=1-\frac{\alpha}{2}$

- (c)

Confidence interval

- Thus

is between $\hat{\beta}$ \qquad

Confidence interval

$$
\begin{aligned}
& \text { - Say } \alpha=5 \% \text {, then } \underbrace{\phi^{-1}\left(\frac{\alpha}{2}\right)=-1.96} \text { and } \Phi^{-1} \underbrace{\left(1-\frac{\alpha}{2}\right)}=1.96 \\
& \text { - Then we know } \beta \text { is between with probability } 95 \% \text { : } \\
& \text { Q Norm (} 0.025 \text {) } \\
& \text { QNoinn(1-0.025) } \\
& \left.\begin{array}{l}
\text { - } \widehat{\beta}-1.96 \widehat{\sigma_{\hat{\beta}}} \\
\text { - } \widehat{\beta}+1.96 \widehat{\sigma_{\widehat{\beta}}}
\end{array} \right\rvert\,
\end{aligned}
$$

- Generally speaking, confidence intervals are wider, the smaller α is

First ten simulations (red line is true β)

Test hypothesis

- Is $\beta \neq \beta_{0}$?
- Usually posed as testing $H_{0}: \beta=\beta_{0}$ vs $H_{a}: \beta \neq \beta_{0}$
- Different way to look at this: is β_{0} is in the confidence interval of β ?
- Confidence interval depends on our choice of α
- Pick largest α for which β_{0} is not in the confidence interval
- This is called the p-value
- Largest probability of obtaining results at least as extreme as those actually observed, under the assumption that the null hypothesis is correct

OLS Review

Linear algebra review
Law of iterated expectations
OLS basics
Conditional expectation function
"Algebraic" properties of OLS
Properties of OLS estimators
Regression (matrix algebra) with a treatment dummy for the experimental case
Frisch-Waugh-Lovell (FWL) theorem
Regression and causality

OLS Review

Frisch-Waugh-Lovell (FW Regression and causality

ols

- $\widehat{\beta}=\left(X^{\prime} x\right)^{-1} x^{\prime} y$

What's going on behind the scenes?

Simple case

- Relationship between outcome Y_{i} and treatment indicator T_{i}
- Regress the outcome on the treatment indicator, and a constant
- $X_{i}=\left(\underline{1} T_{i}\right)$
- Assume first N_{T} units are treated ($N_{C}=N-N_{T}$ units are untreated)
- $X=\left(\begin{array}{cc}1 & T_{1} \\ 1 & T_{2} \\ \vdots & \\ 1 & T_{N_{T}} \\ 1 & T_{N_{T}+1} \\ \vdots & \\ 1 & T_{N}\end{array}\right)=\left(\begin{array}{cc}1 & 1 \\ 1 & 1 \\ \vdots & \vdots \\ 1 & 1 \\ 1 & 0 \\ \vdots & \vdots \\ 1 & 0\end{array}\right) \mathbf{N T}$

Simple case

Simple case
$\cdot x^{\prime} y=\left(\begin{array}{lllll}1 & 1 \cdots & 1 & \cdots 1 \\ 1 & 1 \cdots & \cdots & 0 & \cdots \\ 1\end{array}\right)\left(\begin{array}{c}Y_{1} \\ Y_{2} \\ \vdots \\ Y_{N_{T}} \\ Y_{N_{T}+1} \\ \vdots \\ Y_{N}\end{array}\right)=\binom{\sum_{i=1}^{N} Y_{i}}{\sum_{i=1}^{N_{T}} Y_{i}}$

Simple case

$\left(X^{\prime} X\right)^{-1} X^{\prime} y=\underline{\underbrace{\frac{1}{N_{c}}\left(\begin{array}{cc}1 & -1 \\ -1 & \frac{N}{N_{T}}\end{array}\right)\binom{\sum_{i=1}^{N} Y_{1} Y_{i}}{\sum_{i=1}^{N_{i}} y_{i}}}}$

Simple case

$$
\begin{aligned}
& \left(x^{\prime} x\right)^{-1} x^{\prime} y=\frac{1}{N_{c}}\left(\begin{array}{cc}
1 & -1 \\
-1 & \frac{N}{N_{T}}
\end{array}\right)\binom{\sum_{i=1}^{N} Y_{i}}{\sum_{i=1}^{N_{1}} Y_{i}}
\end{aligned}
$$

Simple case

$$
\begin{aligned}
& \left(X^{\prime} x\right)^{-1} X^{\prime} y=\frac{1}{N_{C}}\left(\begin{array}{cc}
1 & -1 \\
-1 & N \\
N_{T}
\end{array}\right)\binom{\sum_{i=1}^{N} Y_{i} Y_{i}}{\sum_{i=1}^{N_{1}} y_{i}} \\
& =\frac{1}{N_{c}}\binom{\sum_{i=1}^{N} Y_{i}^{N} Y_{i}^{N} \sum_{i=1}^{N_{T}} \sum_{i}-\sum_{i=1}^{N_{T}} Y_{i}}{i=1} \\
& =\frac{1}{N_{C}}\left(\begin{array}{l}
\frac{N}{N_{T}} \sum_{T} Y_{i}-\sum_{C} Y_{i} Y_{i}-\sum_{C} y_{i}
\end{array}\right) \\
& =\frac{1}{N_{C}}\left(\frac{\sum_{C} Y_{i}}{\frac{N-N_{T}}{N_{T}}\left(\sum_{T} Y_{i}\right)-\sum_{C} Y_{i}}\right)
\end{aligned}
$$

Simple case

$$
\begin{aligned}
& \left(x^{\prime} x\right)^{-1} x^{\prime} y=\frac{1}{N_{C}}\left(\begin{array}{cc}
1 & -1 \\
-1 & N_{N}
\end{array}\right)\binom{\sum_{i=1}^{N} \sum_{i=1}^{N} y_{i}}{\sum_{i=1}^{N_{1}} Y_{i}}
\end{aligned}
$$

Simple case

$$
\begin{aligned}
\left(x^{\prime} x\right)^{-1} x^{\prime} y & =\frac{1}{N_{C}}\left(\begin{array}{cc}
1 & -1 \\
-1 & \frac{N}{N_{T}}
\end{array}\right)\binom{\sum_{i=1}^{N} Y_{i=1}^{N} Y_{i}}{\sum_{i=1}^{N_{1}} Y_{i}} \\
& =\frac{1}{N_{C}}\binom{\sum_{i=1}^{N} Y_{i}-\sum_{i=1}^{N_{T}} Y_{i}}{N_{T} \sum_{i=1}^{N_{T}} Y_{i}-\sum_{i=1}^{N} Y_{i}} \\
& =\frac{1}{N_{C}}\binom{\sum_{C} Y_{i}}{\frac{N}{N_{T}} \sum_{T} Y_{i}-\sum_{T} Y_{i}-\sum_{C} Y_{i}} \\
& =\frac{1}{N_{C}}\left(\begin{array}{l}
\sum_{C} Y_{i} \\
\left.\frac{N-N_{T}}{N_{T}}\left(\sum_{T} Y_{i}\right)-\sum_{C} Y_{i}\right) \\
\widehat{\boldsymbol{\beta}}
\end{array}\right. \\
& =\left(\frac{\overline{Y_{C}}}{Y_{T}-Y_{C}}\right)
\end{aligned}
$$

Simple case

$$
\left(x^{\prime} x\right)^{-1} x^{\prime} y=\left(\frac{\overline{Y_{C}}}{\overline{Y_{T}}-\overline{Y_{C}}}\right)
$$

- The OLS estimate of the intercept is $\overline{Y_{C}}$
- The coefficient of the treatment dummy is $\overline{Y_{T}}-\overline{Y_{C}}$

How precise are these estimates?
 - What is the variance of $\widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$
 - Recall $Y=X \beta+u$
 - $\widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+u)$
 - $\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} X \beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u$
 - $\widehat{\beta}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u$
 - If $\mathbb{E}(u X)=0$
 - $V(\widehat{\beta})=\left(X^{\prime} X\right)^{-1} X^{\prime} V(u) X\left(X^{\prime} X\right)^{-1}$ [matrix version of $\left.V(b+a Y)=a^{2} Y\right]$
 - If $V(\varepsilon)=\sigma^{2}$ [Homoskedasticity] then
 - $V(\widehat{\beta})=\left(X^{\prime} X\right)^{-1} X^{\prime} \sigma^{2} I X\left(X^{\prime} X\right)^{-1}=\sigma^{2}\left(X^{\prime} X N^{\prime} \sigma^{2}\left(X^{\prime} X\right)^{-1}\right.$
 - $V(\widehat{\beta})=\sigma^{2} \frac{1}{N_{T}\left(N-N_{T}\right)}\left(\begin{array}{cc}N_{T} & -N_{T} \\ -N_{T} & N\end{array}\right)=$| $\frac{\sigma^{2}}{N_{C}}\left(\begin{array}{cc}1 & -1 \\ -1 & \frac{N}{N_{T}}\end{array}\right)$ |
| :--- |

How precise are these estimates?

Simulations!

```
N=100 #Number of individual
    mu0=1
8. sq=1
#Let's create potential outcomes
#Let's create potential outcomes 
Y1 <- yo + beta # treatment potential outcome
#Lets randomly assign people to treatment
Z.sim <- rbinom(n=N, size=1, prob=.5) # Do a random assignment
Y.sim <- Y1*Z.sim + Yo*(1-Z.sim) # Reveal outcomes according to assignment
oLS=1m(Y.sim~Z.sim)
summary (0LS)
```


How precise are these estimates?


```
\(\mathrm{N}=100\) \#Number of individuals
\(m u 0=1\)
s. \(\mathrm{sq}=1\)
beta= \(=0.2\)
Reps \(=1000\)
estimate-vector =NUL
for ( \(r\) in 1:Reps) t
Yo r- riorm(n=N, mean=mu0, sd=s.sq) \# control potential outcome
Y.
Z. sim \(<-\) rbinom \((\) nelf, size
```



```
beta_estimate \(=\) summary (ols) \(\$\) coef \([2,1]\)
estimate_vector \(=c\left(e s t i m a t e \_v e c t o r, ~ b e t a \_e s t i m a t e\right) ~\)
\({ }_{\text {sd (estimate_vector) }}\)

\section*{Big picture}
- We let the computer do the calculations, which are tedious even for small \(n\)
- Good to know what's going on behind the scenes
- But I honestly do not care if you know how invert a matrix
- Important things in life to understand:
- What \(\hat{\beta}\) is (an estimator of a parameter we do not observe)
- What the standard error is (the standard deviation of the estimator)
- What a confidence interval is (an interval where we know with some probability the
true estimate lives)
- What a \(p\)-value is (largest probability of obtaining results at least as extreme as those actually observed, under the assumption that the null hypothesis is correct)

\section*{OLS Review}

Linear algebra review
Law of iterated expectations
OLS basics
Conditional expectation function
"Algebraic" properties of OLS
Properties of OLS estimators
Regression (matrix algebra) with a treatment dummy for the experimental case
Frisch-Waugh-Lovell (FWL) theorem
Regression and causality

\section*{OLS Review}

Linear algebra review
Law of iterated expectations
Law of iterate
OLS basics
Conditional exnet tation function
"Algebraic" properties of OLS
Properties of OLS estimators

Frisch-Waugh-Lovell (FWL) theorem
Regression and causality

Regression Anatomy Theorem - Frisch-Waugh-Lovell (FWL) theorem


\section*{Big picture}
- Regression anatomy theorem helps us interpret a single slope coefficient in a multiple regression model by the aforementioned decomposition
- Also, help us understand "OLS" as a "matching estimator" (try to compare observations that are alike in the \(\mathrm{X}_{\mathrm{s}}\) )

\section*{OLS Review}

\section*{Linear algebra review}

Law of iterated expectations
OLS basics
Conditional expectation function
"Algebraic" properties of OLS
Properties of OLS estimators
Regression (matrix algebra) with a treatment dummy for the experimental case
Frisch-Waugh-Lovell (FWL) theorem
Regression and causality

\section*{OLS Review}

\section*{aw of iterated expectations}

OLS basics
Conditional expectation function
"Algebraic" properties of OLS
Properties of OLS estimators
Regression (matrix algebra) with a treatment dummy for the experimental case

Regression and causality

\section*{Regression and causality}
- A treatment \((T)\) induces two "potential outcomes" for individual - The untreated outcome \(Y_{0}\)
- The treated outcome \(Y_{1 i}\)

\section*{Potential outcomes - reminder}
- A treatment \((T)\) induces two "potential outcomes" for individual - The untreated outcome \(Y\)
- The treated outcome \(Y\)

The observed outcome
\[
\begin{aligned}
Y_{i} & = \begin{cases}Y_{1 i} & \text { if } T_{i}=1 \\
Y_{0 i} & \text { if } T_{i}=0\end{cases} \\
& =Y_{0 i}+\left(Y_{1 i}-Y_{0 i}\right) T_{i}
\end{aligned}
\]

\section*{Potential outcomes - reminder}
- A treatment \((T)\) induces two "potential outcomes" for individual \(i\) The
- The treated outcome \(Y\)

The observed outcome
\[
\begin{aligned}
Y_{i} & = \begin{cases}Y_{1 i} & \text { if } T_{i}=1 \\
Y_{0 i} & \text { if } T_{i}=0\end{cases} \\
& =Y_{0 i}+\left(Y_{1 i}-Y_{0 i}\right) T_{i}
\end{aligned}
\]
- The impact for any individual is \(\delta_{i}=Y_{1 i}-Y_{0 i}\)

Potential outcomes - reminder
- A treatment ( \(T\) ) induces two "potential outcomes" for individual
- The untreated outcome \(Y_{0}\)
- The treated outcome \(Y_{1 i}\)

The observed outcome
\[
\begin{aligned}
Y_{i} & = \begin{cases}Y_{1 i} & \text { if } T_{i}=1 \\
Y_{0 i} & \text { if } T_{i}=0\end{cases} \\
& =Y_{0 i}+\left(Y_{1 i}-Y_{0 i}\right) T_{i}
\end{aligned}
\]
- The impact for any individual is \(\delta_{i}=Y_{1 i}-Y_{0 ;}\)
- Fundamental problem: Never observe both potential outcomes for the same individual

\section*{We can't just compared treated/untreated individuals}
- We observe \(Y_{i}=Y_{0 i}+\underbrace{\left(Y_{1 i}-Y_{0 i}\right)}_{\delta_{i}=\text { impact }} T_{i}\)
- If we compare the outcomes of treated and untreated individuals:
\[
\underbrace{\mathbb{E}\left(Y_{i} \mid T_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid T_{i}=0\right)}_{\text {Observed difference }}=
\]

\section*{We can't just compared treated/untreated individuals}
- We observe \(Y_{i}=Y_{0 i}+\underbrace{\left(Y_{1 i}-Y_{0 i}\right)}_{\delta_{i}=\text { impact }} T_{i}\)
- If we compare the outcomes of treated and untreated individuals:
\[
\begin{aligned}
\underbrace{\mathbb{E}\left(Y_{i} \mid T_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid T_{i}=0\right)}_{\text {Obeered difference }}= & \mathbb{E}\left(Y_{1 i} \mid T_{i}=1\right)-\mathbb{E}\left(Y_{0 i} \mid T_{i}=1\right)+ \\
& \mathbb{E}\left(Y_{0 i} \mid T_{i}=1\right)-\mathbb{E}\left(Y_{0 i} \mid T_{i}=0\right)
\end{aligned}
\]
- We observe \(Y_{i}=Y_{0 i}+\underbrace{\left(Y_{1 i}-Y_{0 i)}\right.}_{\delta_{i}=\text { impact }} T_{i}\)
- If we compare the outcomes of treated and untreated individuals:
\[
\begin{aligned}
& \underbrace{\mathbb{E}\left(Y_{i} \mid T_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid T_{i}=0\right)}_{\text {Observed difference }}=\mathbb{E}\left(Y_{1 i} \mid T_{i}=1\right)-\mathbb{E}\left(Y_{0 i} \mid T_{i}=1\right)+ \\
& \mathbb{E}\left(Y_{0 i} \mid T_{i}=1\right)-\mathbb{E}\left(Y_{0} \mid T_{i}=0\right) \\
& =\underbrace{\mathbb{E}\left(Y_{1 i} \mid T_{i}=1\right)-\mathbb{E}\left(Y_{0 i} \mid T_{i}=1\right)}+ \\
& \underbrace{\mathbb{E}\left(Y_{0} \mid T_{i}=1\right)-\mathbb{E}\left(Y_{0 ;} \mid T_{i}=0\right)}
\end{aligned}
\]

\section*{Unconfoundedness}

Assumption (Unconfoundedness)
\(\left(Y_{1 i}, Y_{0 i}\right) \amalg T_{i} \mid X\)
In words:
1. Once we condition on observable characteristics \(X_{i}\), the treatment \(T_{i}\) is as good as randomly assigned
2. Put differently, within the group of individuals with the same characteristics \(x_{i}\), we have a randomized experiment
3. Yet another way of saying it is that conditional on \(x_{i}\), the selection bias disappears

Uncounfoundedness is fundamentally untestable and should always be discussed!

\section*{Overlap}
- In order to exploit the unconfoundedness assumption, for all values of \(x_{i}\) we need to have both treated and untreated units
Otherwise, either no treatment or no control group for some values of \(x_{1}\)
- Propensity score, which gives us the probability of \(I_{i=1}\) given \(X_{i}=x\)
\[
p(x)=P\left(T_{i}=1 x_{i}=x\right)
\]
- \(p(x)=1\) means that there are no control units (everyone is treated)
- \(p(x)=0\) means that there are no treated units (no one is treated) Assumption (Overlap)
\(0<p(x)<1\) for all \(x\)
- In contrast to unconfoundedness, overlap is testable since we can compute \(p(x)\) from the data

\section*{Identification under unconfoundedness}
- How can we identify treatment effects under unconfoundedness?

Define the conditional mean difference as
\[
\left[\delta_{x}=E\left[Y_{i} \mid T_{i}=1, x_{i}=x\right]-E\left[Y_{i} \mid T_{i}=0, x_{i}=x\right]\right.
\]
- Conditional on \(x_{i}=x\), we can use the same arguments as the experimental case:
\(\delta_{x}=E\left[Y_{i} \left\lvert\, \frac{\left.T_{i}=1, x_{i}=x\right]-E\left[Y_{i} \mid T_{i}=0, x_{i}=x\right]}{\text { a }}\right.\right.\)

\(=E\left[\widehat{Y_{1 i}} \mid \widehat{\left.x_{i}=x\right]}-E\left[Y_{0 i}\left|\widehat{\left.x_{i}=x\right]}\right\rangle\right.\right.\)
- The second equality is well-defined for every \(x\) by the overlap_amption
-The third equality is by unconfoundedness

\section*{Identification under unconfoundedness}the ATE for individuals with charateristics \(x_{i}=x\)
- We can get the (unconditional) ATE as


\section*{Discrete covariates}
- The results so far are rather abstract.
- It is easier to understand the results with discrete covariates \(x_{i}\)
- In this case, \(A-\mathbb{E}=\underline{E\left[Y_{1 i}-Y_{0 i}\right]}=\sum_{x} \delta_{x} P \underbrace{\left(x_{i}=x\right)}=\mathbb{F}(\mathbb{X})\)
- Suppose \(x_{i}\) is binary. In this case the formula becomes.


- \(T_{i}\) is gender ( \(T_{i}=1\) if male and \(T_{i}=0\) if female)
\(\cdot x_{i}=M_{i}\) is choice of major
- Unconfoundedness: gender is independent of admission outcomes conditional on
major

An example: causal effect of gender on admissions
\[
\begin{array}{rc}
50 \%-75 \% & \rightarrow \Delta 25 \mathrm{PP} \\
\sigma^{\prime} 50 \%+
\end{array}
\]
\(=\frac{400 / 600}{100 / 400}-\underline{\underline{300 / 400}}=\frac{0.166}{-0.5}\)
\(\left.M_{i}=A\right)=(\underline{600+100) /(1500)}=\underline{0.466}\)
\(P\left(M_{i}=B\right)=(400+400) / 1500=0.533\)
\(\delta=A T E=0.167 \cdot 0.47+\overline{(-0.5)} \cdot 0.533=-0.19\)

\section*{Regression and causality}
\(\square\)
- Thus, a linear regression model has an (approximate) causal interpretation under unconfoundedness.

Regression and causality
- If the population regression model is:
\[
Y_{i}=\theta T_{i}+X_{i}^{\prime} \beta+u_{i}
\]
- The \(\delta_{x}=\theta\) nstant across \(x\) and thus \(\frac{A T E=\theta}{2}\)

\section*{What if \(\delta_{x}\) is not constant?}

\({ }^{131}\)

\section*{Simulations!}


\section*{What if \(\delta_{x}\) is not constant?}
- Estimate
\(Y_{i}=\theta T_{i}+X_{i}^{\prime} \beta+u_{i}\)
- Regression yields \(\hat{\theta}=-0.3 \neq A T E=-0.19\)
- Regression yields \(\hat{\theta}=-0.3 \neq A T E=-0.19\)
- In general, we get the following weighted average
- In general, we get the following weighted average
- Regression produces a treatment-variance weighted average of \(\delta_{x}\) (proof in Angrist
and Pischke MHE 3.31\()\)
In our case \(\sigma_{T_{i} \mid X_{i}}^{2}=P\left(T_{i}=1 \mid X_{i}\right)\left(1-P\left(T_{i}=1 \mid X_{i}\right)\right.\)


What if \(\delta_{x}\) is not constant?
- Therefore:


- Beware of what OLS gives you
- Still causal interpretation, even if \(\delta_{x}\) is not constant

Weighted average of different \(\delta_{x}\)
- Weights depend on the variance!

\section*{Beyond regression}
- Regression is only one method to obtain causal effects under uncounfoundedness
- Other popular methods are: matching and inverse probability weighting
- Assumption are the same, they generally yield similar results (but implicit weights are different)
- A great review is: Recent Developments in the Econometrics of Program Evaluation by Imbens and Wooldrige (2009)
- Check this out: http://www.nber.org/minicourse3.html

\section*{Some important remarks}
(based on Cyrus Samii's lecture notes)
For most researchers, the math obscures the assumptions. Without an ex periment, a natural experiment, a discontinuity, or some other strong design, no amount of econometric or statistical modeling can make the move from correlation to causation persuasive. (Sekhon, 2009, p. 503)
- At the end of the day, OLS (and other matching/weighting estimators) "mop up" imbalances that makes CIA plausible
- Thought experiment necessary to test CIA:
- How could it be that two units that are identical with respect to all meaningfu background factors nonetheless receive different treatment?
- Your answer to this question is your source of identification```


[^0]:    Don't let anyone tell you the model is good because any of the following happens

    1. Residuals add to zero
    2. Fitted values mean is equal to data mean
    3. Residuals are uncorrelated with $x$
    4. If we plug in the average for $x$, we predict the sample average for $y$

    These results are mechanical: Unrelated to how appropriate the model is or "causality"

