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Basic matrix operations 

• k [:] ~ [::] 

[a •] [:] ~ [ac + bd] 

[~ ~] [: !] ~ [: !] 
[: !] [~ ~] ~ [: !] 

Matnx mult1plicat1on 

• let An xm and Bmxk, then (AB)nxk 

• let An xm and Bmxk, then (BA) "conformability error" 



• Transpose of Product (AB)'= B'A' and (ABC)'= C'B' A' 

• Tran~ an inverse equals inverse of a transpose {0- 1 )' = (D')- 1 
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Law of iterated expectations 

Law of Iterated Expectations (LIE) A useful trick 

• Forma lly: The unconditional expectation of a random variable is eq ual to the 

expectation of the conditional expectation of the random variable conditional on 

some other random variable 

E(Y) - E(E[YIXI) 

• Informa lly · the weighted average of the conditional averages is the unconditional 

average 

Example of LIE 

• Say want average wage but only know average wage by education level 

• LI E says we get the former by taking conditional expectations by education level 

and combining them (properly weighted) 

IE [Wage] 

• E[IQ] - 120 

E(E[ Wage I Education]) 

L Pr(Education;) · E[WagelEducation;] 
Education; 

Pe rson Gender IQ 

M 120 

M 115 

M llO 
130 

125 

120 

• E[IQ I Male] = 115; E[IQ I Female] = 125 

• LI E: E ( E [ IQ I Sex]) = (0.S)x115 + (0.5) x 125 = 120 

( I / 
1?' A MV,1 
l~~ -



LIE Proof for the discrete case 

L E[YIX - xJp(x) 

'"41 - LYP(Y) 

E(Y) 

LIE Proof for the contmuous case 

E[E(YIX)[ 
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j E(YIX - u)g,(u)du 

j [/ ,r,,,r,1x - u)dt] g,(u)du 

J J tfYl,.(t lX = u)gx(u)dudt 

j t [/ r,1,(tlX - u)g,(u)du] dt 

J t[fx ,ydu]dt 

J tgy{t)dt 

E(y) 
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OLS basics 

OLS - As mmimmng residuals 

• Data with n observations and two variables: (x1 . .. xn) and (y1 • .•. , Yn) 

• Find the line (ffo + iJ,x) that best fits the data 

• Yi = ffo + $i x; is the fitted value for i 

• The residual is U; = y; - Yi 

• Goal: minimize residuals or distance from the line (fitted values) to the data 

OLS As m,mmmng residuals 

• We don't care if the residual U; is positive or negative, we want it to be small 

• So we square it: U;2 

• Why not the absolute value7 Good statistical reasons+ harder to work with I 

• We want all the mistakes to be small, so we really want to minimize L~=l U;2 



OLS - As mmimmng residuals 

• Using calculus (deriving with respect to /Jo.ff.. and equating to zero) 

I:7~, (x, - x,)(y, - Yi 
L7=1(x, - x;)2 

Visual tour of OLS 

¼ L7=l (x; - Xi)(y; - Yi) Sample covariance (x,y) 

¼ :[f=1(x; - x;:)2 Sample variance (x) 

• https: / /ryansafner. shinyapps. io/ols_estimation_by_min_sse/ 

• https : //seeing-theory . brown. edu/regression-analysis/ 

index. html#sectionl 

• https : / /setosa. io/ev/ordinary-least - squares- regression/ 

• https : / /mgimond.github. io/Stats-in-R/regression . html 

OLS as an estimator 

• T here is a population with two random variables x and y 

• We take a random sample of size n: (x1, x2 . .. xn) and (Y1,Y2 , . . ,yn) 

• We would like to see how y varies with changes in x 

• Whatifyisaffectedbyfactorsotherthanx? 

• What is the funct ional form connecting these two variables? 

• If interested in causal effect of x on y. how to distinguish from mere correlation? 

OLS as an estimator of the DGP parameters 

• Assume the data generating proces (DGP)s is 

y,= f3o +f31x;+u; 

• T hat is, this model holds in the popula tio n 

• Not only x; affects y;, u; (called the error term) also does 

• Do not confuse u; with Uj 

• We assume there is a linear relationship between y; and x; 

• We neverobservef3oand f31 

Inference 

• Goal: Estimate unknown parameters 

• To approximate parameters, we use an estimator. which is a function of the data 

• T hus, estimator is a random variable (it is a function of a random variable) 

• Infer something about the parameters from the distribution of the estimator 

Important notation 

Based on this tweet: bttpa ://t111tter.c0m/n ickchk/ atatua /l27299332239S557888 

• Greek letters (e.g.,µ) are the truth (i.e., parameters of the true DGP) 

• Greek letters with hats {e.g.,µ) are estimates (i.e., what we think the truth is) 

• Non-Greek letters (e.g., X) denote sample/ data 

• Non-Greek letters wi t h lines on top (e.g., X) denote calculations from the data 

• We want to estimate the truth, with some ca lculation from the data (/1 = X) 

• Data -----. Calculations -----. Estimate ~ Truth 

Hopefully 

• Example: X -----. X -----. ji ~ µ 
Hopefully 



OLS as an estimator of the DGP parameters 

• Assume the data generating process is: 

• Also assume Eu, = 0 
• Without loss of generality 
• Wecanjustcha ngetheintercepttoforce !Eu; = O 
• For example if !Euj= Oo 

• Redefine model to yj = ~ +f31 xj + ~ 

• Assume mean independence IE(ujlx;) = IE(u,) for all values x 

Implies that E(u;lx) = E(u;) = 0 
Implies that E(ujx;) = E(E{u;jxj)) = 0 

OLS as an estimator of the DGP parameters 

• E(y;lx.)~ /Jo+P,x, -,, ~Y,!X,) ~ f&.,/Xi} f(~tlY.:}~
0 

~fi,KL-1 wll., \ 
• E(y;lx1): population regression f tion or condit ional .txpectation functio n 

• By our assump~t;_o,_, _, -----..._ 

• E(u,lx;) E(yj -f3o -f31xd = 0 

• E(u,x;) E(x(y, - /Jo - /J1xd) = 0 

• T hese two conditions determine /3o and /31 

OLS as an estimator of the DGP parameters 

First equation 

E(y, - /Jo - P,x;) 
!Ey; - f3o - /311E x; 

/ ~ -P,Ex; 

OLS as an estimator of the DGP parameters 

Second equation ~i,.J 
( ~ - Po - P,x,) 

Ex,(y,-e:~P,x,) 
Ex, (y, =:,;:, - 1 ( x, - !Ex ) 

x;(y; - Ey;) 

OLS as an estimator of the DGP parameters 

0 v 
~") / 
Ex;f ,(x; - Ex;) ~ 
/31IE(x; - Exj)(x; - !Ex;) i/ 
p, 

• But we don't have x and y, nor do we know !Ey; or Exj 

• We only have a random sample of size n (x1 , ... ,xn) and (Yt , ··,Yn) 

• T he sample analogs: 

OLS as an estimator of the DGP parameters 

First equation 

'c I)r, - Fo - fi. x,) 
n i=I 



OLS as an estimator of the DGP parameters 

Second equation 

;tx;(y; -fk-if, x;) 

~ t."(y, -(,- $,,) - P,") 

;t,x,(y,-y;+ ffi (X; -x;)) = 0 

;t,x,(y; - Y;) 

; t.(x; -X;)(y; - }'i) 

¼L~_,(x; - x;J(r1 - :rn 
l [ " , (x; y. )2 

: mpleco,a,iaace(,,y) 
t..=::amplevar,ance(x) 

OLS as an estimator of the DGP parameters 

~ t. x,( ff, (x; - Xi)) 

P, ~t.l'- - <ll'- - <I 

p, 

• Formulas are the same as "minimizing residuals" 

• Show the OLS coefficients as estimator of the population parameters {Po and /3t) 

• Some remarks: 

• Can only estimate if the sample variance of x; is not zero 

• In other words, if x; is not constant across all values of i 

• Intuitively.the variation in xis what permits us to identify its impact iny 

Multiple regressmn - notation 

• Consider the multiple linear regression model 

y; = x;/3+ u; 

where /3 = (/3o,/31, ... ,f31<)' and x; = (1 , .. ,xK)' 
• f3 is of size (I< x 1) 
• x; is of size (I< x 1) 

• xff3 isofsize(lxl<)(l<xl) = lxl 

• Equivalent 

y = X/3+ u 
where /3= (/30,/31, .. ,f3K)' 

• f3 is of size (I< x 1) 
• X isofsize{n x I<) 
• X(J isofsize (nx k)(k x 1) = n x 1 

• T he sample equivalent is 

Solving for 

• We let the computer do the calculations, which are tedious even for small n 

• Good to know what's going on behind the scenes 

• But I honestly do not care if you know how invert a matrix 

S1mulat1ons• 

alpha- 1 #intercept 

beta • 2 #slope 

Nobs• 10000 #ho11 many observations? 

X• runif (Nobs,- 5 , S ) 

#use the DGP to generate da t a 

Y• alpha+ beta • X+ rnorm (Nobs) 

(fill} ~ (Y-X) ---
summary (OLS) -



Our estimate of the coefficient are pretty close to the truth 

But how close on average 7 

#No11 lets repeat the process and see ho11 close our estimates are 

Reps• l.£2.2.. 

J;lpha _ estimate•WUJ­

eta _ e~timate•NULL 
for (r 1n ! :Reps){ 

X• runif (lfobs,- 5 , 5 ) 

#use the DGP to generate data 

-,l> Y• alpha+ beta • X+ ~ 

~ 
~stimates • summar y (OLS)$ coef [, "Estimate"] 

f :~~:a~:::~:::::~~:~~~:~:::~::~~~~~:::~~~; l) 

} -
~

hist ( beta _ estimate,freq•F,breaks•30 , 

main•"",las• l ,xlab•'Estimate of beta") 

abline (v• beta , col•'red',lvd•2 ,lty•2 ) 

Distribution of estimate of 7 

OLS Review 

Linear algebra review 

Law of iterated expectations 

OLS basics 

Conditional expectation function 

"Algebraic" properties of OLS 

Properties of OLS estimators 

Regression (matrix algebra) with a treatment dummy for the experimental case 

Frisch-Waugh-Lovell (FWL) theorem 

Regression and causality 

OLS Review 

Conditional expectation function 

Cond1t1onal expectation function (CEF) 

• Assume we are interested in the returns to schooling 

• Summarize the effect of schooling on wages with the CEF {IE{y;lx;)) 

• The CEF is the expectation (i.e, population average) of y; with x; held constant 

• E(y;lx,) provides a reasonable representation of how y changes with x 

• Because x; is random, E[y; Ix;] is random 

• Sometimes work with a particular value of the CEF (e.g., E[y; Ix; = 121) 



Property 1 CEF Decompos1t1on Property 

• y; = IE(y,lx;) + Uj where 

1 Uj is mean independent of x,; that is E(ujlx;) = 0 

2. Uj is uncorrelated with any function of x; 

• In words: any random variable, y,, can be decomposed into two parts the part 

that can be explained by x; and the part left over that cannot be explained by x; 

• Proof is in Angrist and Pischke (ch. 3) 

• l et m(x;) be any function of x; 

• E (y; lx;) = arg minm(x,) IE[(y; - m(x;))2] 

• In words: The CEF is the minimum mean squared error predictor of y; given x ; 

• Proof is in Angrist and Pischke (ch. 3) 

Property 3 Best lmear approx1mat1on 

• The population regression is the best linear approximation to the true nonlinear 

CEF in a mean squared error sense 

• In words: even if the true CEF is nonlinear {for example, E[y; Ix;]= log(x;)), 

regression is still a good approximation to the truth 

Why lmear regression may be of mterest (summary) 

• If the CEF is linear. Then the population regression is it 

• Then it makes the most sense to use linear regression to estimate it 

• linear regression may be interesting even if the underlying CEF is not linear 

• E(ydx;), is the minimum mean squared error predictor of y; given x; in the class of 
all functions of x ; 

• The population regression function is the best we can do in the class of al l linear 
functions to approximate E(y,lx;) 

Big picture 

1. Regression provides the best linear predictor for the dependent variable in the 

same way that the CEF is the best unrestricted predictor of the dependent variable 

2 If we prefer to think of approximating E (y; lx;) as opposed to predicting y; , even if 

the CEF is nonlinear, regression provides the best linear approximation to it 
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"Algebraic" properties of OLS 

Residuals add up to zero 

• Remembering how the first moment condition allows us to obtain /3o and jj1 : 

f( vt':0 ~ ,~iio~/l,x;) :J~ l zv'c: -::0 ~} y 11. X ;. , /I 
~ Z.\Ji.: i-,O-t'ff\' 
(i • T his means the OLS residuals a/ways add up to zero, by construction, 

The mean of the fitted values 1s the mean of the data 

Because ~ = Z:, + t by definition, 

yi: ,icvd"~ t ~ 
.I\ 

y U0 ~ Ut 

T he sample covariance (and therefore the sample correlation) between the explanatory 

(2) [(fcv~')~o variables and the residuals is always zero 

Brmging thmgs together 

Because the 9; are linear functions of the x;, the fitted values and residuals are 

uncorrelated, too: 

The pomt (X Y) 1s always on the OLS regression lme 

{see fo rmula for,Bo) 

===-----""" 

(3) 



Nobs• l000 #ho11 many observations? 

-lt X"' runif (Nobs,- 5 , 5 ) 

#use the DGP to generate data 

Y• t0 +2 •x· 2+ rnorm (Nobs) --. 

OLS• lm (r·x) 

aummary (OLS) 

-f Plot ( l.....,bty•"L") 

-r, abline (OLS, co l • 2 ,lvd • 2 ,lty • 2 ) 
points ( mean (X) , me an (Y) ,pch • 19 , col • 4 ,cex • 1 . 5 ) 

#No t a ~rea t h t ... y et 

# r esi dual a d d to z e r o 

1 sum (OLS$ residuals ) 

#meanoffittedvaluesisthemean 1truevalues 

mean (OLS$ fitted .values)-mean (Y) • -V 
# sample covariance between X and res duals ( s zero 

sum (OLS$ residuals •X) 

#sample covariance between fitted values and residuals is zero 

sum (OLS$ residuala •OLSS fitted .values) 

Algebraic properties 

Big picture 

Don't let anyone tell you the model is good because any of the following happens 

1. Residuals add to zero 

2. Fitted values mean is equal to data mean 

3 Residuals are uncorrelated with x 

4. If we plug in the average for x, we predict the sample average for y 

These results are mechanical: Unrelated to how appropriate the model is or "causality" 
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Expected Value of OLS 

• Mathematical statistics: How do our estimators behave across different samples of 

data 7 On average. would we get the right answer if we could repeatedly sample? 

• Find the expected value of the OLS estimators - the average outcome across all 

possible random samples - and determine if we are right on average 

• l eads to the notion of unbiasedness, a "desirable" characteristic for estimators. 

(5) 

Don't forget why we're here 

• The population parameter that describes the relationship between y and x is f3 

• Goal: estimate f3 with a sample of data 

• 'fj is an estima tor obtained with a specific sample from the population 

Uncertainty and sampling variance 

• Different samples will generate different estimates ('iJ) for the "true" f3 

• Thus, 'fj a random variable {depends on random samples) 

• Unbiasedness is the idea that if we could take as many random samples on y as 

we want from the population , and compute an estimate each time, the average of 

these estimates would be equal to f3 

• But, this also implies that 'fj has spread and therefore variance 

Assumption 1 (Linear m Parameters) 

• The population model can be written as 

y= Xf3 +u 

where f3 are the (unknown) population parameters 

• We view X and u as outcomes of random variables: thus. y is random 

• Our goal is to estimate f3 

(6) 

• u is the unobserved error. It is not the residual that we compute from the data! 

Assumption 2 (Random Sampling) 

• We have a random sample of size n, {(x; , y;): i = 1, ... , n} 

• We know how to use this data to estimate f3 by OLS 

Assumption 3 (Zero Conditional Mean) 

y~ ~r -I u 
( 0 v r\) f:p.ie,Ai:,(tJN 

• In the population, the error term has zero mean given any value of X: 

E(ulX) ~ E(u) ~ 0. - (7) 

• T his is the key assumption for showing that OLS is unbiased, with the zero value 

not being important once we assume IE(ulX) does not change with X 



Assumption 1-3 

• We can compute the OLS estimates whether or not these assumption hold 

• But we might not get a "good" estimate 

Assumption 4 (Sample Variation 1n the Explanatory Variable) 

• T he sample outcomes on x; are not all the same value 

• Same as saying the sample variance of {x; i = 1, ... , n} is not zero 

• If the x; are all the same value, we cannot learn how x affects y 

Showing OLS is unbiased 

' J1 
• Howdoweshow j3 isoobiasedfo, ~7 ('f.f,'y'x'x B+f xx) AV 
• We kot (;;)- 'X'y 1 / ~ r ~ 
• And that y = X /3 + u (by assumption y 
• T herefore: ffi = (X'X)- 1X'(X f3 + u) = /3+ (X'X)- 1X'u - - -
• E(fi lX)~ (!: t (x'x)-'X' ~ 

= 0byassumption3 

• Some will be very close to the true values /3 

• Some could be very far from those values 

• If we repeat the experiment and average the estimates -+ very close to /3 

• But in a single sample. we can never know whether we are close to /3 

• Next: measure of dispersion (spread) in the distribution of the estimators 

Repeat our simulations with different N 

alpha '" l # intercept 

beta • 2 #slope 

Reps • tOOO 

for ( ~ i n c ( t00 , 1000 , 10000 )){ 

I :~:::~:::::::::~~t 
f or (r in 1 :Reps){ 

X• runif (Nobs,- 5 , 5 ) 

• Y•alpha+ beta *X+ rnorm (Nobs) 

• OLS • lm (Y-X) 

_ Estimat es • summary (OLS)$ coe f [, " Estimate'] 

alpha _ estimate • c (alpha _ estimate ,Estimat es [ 1]) 

b et a _ estimate • c ( beta _ es t imate ,Es t imates[ 2 ]) 

) 

lhist ( beta. _ estimat e ,freq • F, breaks • 30 ,main • "" ,las • l ) ' 

abline (v • bet11. , col • 'red',l1id • 3 ,lty • 1 ) 

Repeat our simulations with different N - Look at the x axis scale 

]A 1:1 I· 

:J 
,. , ... ,. ,. 



Remmder 

• Errors are t he ve rt ical distances between observations and the unknown 

Condi t ional Expectation Function. Therefore, they are unknown. 

• Residuals are the vertical distances between observations and the estimated 

regression function. Therefore, they are known. 

Vanance of OLS estimators 

The correct variance estimation procedure is given by the structure of the data 

• It is very unlikely that all observations in a dataset are unrelated, but drawn from 

identica l distributions (homoske dasticity) 

• For instance, the variance of income is often greater in families belonging to top 

deciles than among poorer families (heteroskedasticity) 

• Some phenomena do not affect observations individually, but they do affect 

groups of observations uniformly within each group (clustered da ta ) 

Assumption 5 (Homoskedastic1ty, or Constant Variance) 

The error has the same variance given any value of the explanatory variable x: 

Var(ulX) = a2 > O 

where a 2 is (virtually always) unknown 

Because E(ulx) = 0 we can also write 

Assumption 5 (Homoskedasticity, or Constant Vanance) 

Under the our assumptions 

y 

>jrlx) 
Var(y lx) 

X f3+ u 

x~ 

(8) 

(9) 

The average or expected value of y is allowed to change with x, but the variance does 

not change with x 

Assumption 5 (Homoskedastic1ty, or Constant Variance) 

Variance of OLS estimators In matrix form the pro~erty that V(aW) =tifJ:._(W) 

where a is constant and W is a random variable is written as: c...-_ 

J • 
~ - AV(W)A' 

where A is a constant matrix and W is a random variable 



• We know P = (X1X)- 1X'y 

• And that y = X/3 + u (by assumption 1) .,.._ 

•lntheformula ,~ 

V(£1 X) = (X'X) - 'X'a'X(X'X) - ' =~ 

we can compute (X'X)- 1 but we need to estimate a 2 

• Recall that 

Estimating the Error Variance 

• If we could observe the errors (u;) an unbiased estimator of o-2 would be 

TI t. uQ - (10) 

• But this not a feasible estimator because the u; are unobserved 

• How about replacing each u; with its "estimate", the OLS residual U;? 

Estimating the Error Variance 

U; can be computed from the data, but U; ¥- u; for any i· 

~ = y; - xf ffi = x;/3+ u; - xf ffi 

= !. - (!.:!)~ 

E(P) = f3 but the estimators differ from the population values in a given sample 

Estimating the Error Variance 

• Now, what about this as an estimator of a 2? 

rR?i 
l2!:..J 

• It is a feasible estimator and easily computed from the data after OLS 

• As it turns out, this estimator is slightly biased 

Estimating the Error Variance 

(11) 

The estimator does not account for the restrictions on the residuals, used to obtain P 

gl l ~x,;u; = O ~ 

Lxk;U; = 0 

There is no such restriction on he ;~:observed errors 



Estimating the Error Variance 

The unbiased estimator of a 2 uses a degrees-of-freedom adjustment T he residuals 

have only n - k degrees-of-freedom (minus the k restrictions), not n 

THEOR EM: Unbiased Esti matOf'" of a 2 

Under Assumptions 1-5, 

• Given U, we ca n now estimate ~ 

• V(3) is a variance-covariance matrix (size k x k) 

• T he diagonal elements of ~ give us the variance of the estimators 8 

• aj: T he square root of the diagonal elements of the estimator of V(3) is usually 

called the standard errors (i.e., estimate of t he standard deviation of the 

estimator) 

8- ~ 
ffi 

.... , N(0, 1) 

~ .... , a ~ (0,1) + ~ 

8 .... , .v(~, "~1 

• a13 = a 2(X'X)- 1 

• Since we do not know a 2• we estimate it 

-;trr~ ;;'(x'xfJ -
• By some version of the central limit theorem + some statistical properties 

To keep things simple 

• tn-k--+ N(0 , 1) as (n- k)--+= - ---
• So as tong as your sample is large, we can keep thinking of normal dist ributions 

31 7% of estimates will be more than ri1 away from -/ 

4 55% of estimates will be more than 2rT~ away from -! 



We can know learn something about the true -/ 

• We know §""' N( /3 . Ufl 
• We want to find some interval on which f3 is likely to live: 

P(a-S /3 5:b) = l - o-- - --
• P(-a ::'.: - /3::'.: b)=l- o: 

• P ~~ rG -~-;,' - 1 - a 

. ~ 1 
{t. - 1to bt t x~ct) 

• Assuming we want symmetry (so 'f on each side), then · 

•0'.¾r) cl- , 
·e)~ )=I 

Confidence interval 

• T hus: 

0 $_, (¥)Cr,;') -~ -~=~ 
• b= ,8 -4> - 1 (I)u'J 

• a= $ -4l- 1 (1- ¥)5i 

• f3 is between f - ¢, - l (1 - 'f) aJ and ffi - ¢,- I (!f) aJ with probability 1 - a: - -
Confidence interval 

• Say a:= 5%, then ~ = - ~ and ¢, - 1 i:.:.J1 = ~ 

• T hen we know /3 is between with probability 95% .... 
, ~ - L96"j I 
• fJ+ 1.9bu'J 

• Generally speaking, confidence intervals are wider, the smaller o is 

Simulations• 

bo,.0....1 # oot u co pt 
bet•l2 # • 1ooo 
flt-- lot, «o• • • th o ornco n •od u o h,,.. do u o •• ,,. ;,.,. , ., • « 
R•o•=I000 
Nobo- l00 #o , mb., of ob, 

I~:::~:::::::::~~~~ ::::::: :: ::::: ::::::::: :: ~:::~ 
1,,.; . ., , ,. c,~ccc '"""' •• " " '" .,,., ... ,.; • .,. ;, ;. " -"( ) 

)J:,:il:~fi::~iii:;,:;.~ ~·.::: ~::: ~: ~<) ~ 
~~:;~.:!,~:::·i~!+~Jo,o, (Nob• I *"" th• DGf> to ''""'" d•ta 

~ g~~~:.~3~£!H~!l~~::;'~£·:~~'..1;·~:::~f:;;·~ b,, ~ 
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First ten s1mulat1ons (red line is true -1 ) 

l 

Test hypothesis 

• ls /3 -/-/30? 

• Usually posed as testing Ho f3 = f3o vs H., f3 -1- f3o 

l 

j 

• Different way to look at this: is /3o is in the confidence interval of /3? 

• Confidence interval depends on our choice of o: 

• P ick la rgest o: for which ~ s not in the confidence interval 

eThisiscalledth:,_.g.:-; 

• Largest probability of obtaining results at least as extreme as those actually 

observed, under the assumption that the null hypothesis is correct 

Simulations! 

~I.:, : ~ -c> 

r-v,do'l ~o/c> ----------
v(j) 

1-----(ozo 
,.?I 

-t--1 
~ ':: fzow -~~-z. I 



Simulations• 

//#ff p-v•lun 

be,.0-1 *'"'"'""' 
bot•l2 #,lo po 
~ leu , epeu t he p , oceu ud "e '-' close ou, tltimuu o,e 
R,p,- 1000 
Nobs=IOOO ,l n,mbu of ob, 
P•• lue. bot> O=aN Ull #ve<to• t o ,to,e whothe, 
pvo luo . b,tal----NUl l lv•cto, t o ,t o ,owhoth" 
Coof ;d,.ce.le.e l--<l 05 #• 1oha 
fo , (,in l. Rop, ){ 

X= , ,n; f( Nobs, - S .S ) 

~~ : : . ~~b':;. , ::+:::,::;~:b:t 
OI.S=, m (Y"X) 

E,tomotn= , mmuy (Ot.S)l coof [, "Eotim >to"]#•"' '"''° 
SEc--summo,, (OLS) S ,o<f ( , " Std [.,o, ·j *'" ;"'"' ,;1m>. bot a 
botaO .oot'mato a:o< ( botoO .o,t'moto , Eot "m•to•I I ]) 
boul . e,t lmot•=<( boul .ntl moto , E,timoto • PI ) 
IConf ;d,.« in to•••' • 
CI .Bot o . lowubo , nd-E,timotn [2 j+ qno ,m{Confid,nco .l ov o l/ 2 )•SE [2 ] 

~ :; 6; t~~"~f;,bound-Eotim,tu [2 j+ qno ,m { I-Co ofide oce . le••l/ 2 ) •S E [2 ] 

; ~: ' ;• :: • ~•, i;=c ( pv> lu• . beuO ,(Cl . B•U . low.,bound <O &. Cl .Bet>- upp.,bound >O )) 

pvo luo . bot , 2=c (pvo luo . beta2 .(CI . Boto . low.,bo und<2 &. CI.Bota .uppub ound >l )) 
} 
mHn lpvo l uo . botaO ) 

OLS Review 

Linear algebra review 

Law of iterated expectations 

OLS basics 

Conditional expectation function 

"Algebraic" properties of OLS 

Properties of OLS estimators 

Regression (matrix algebra) with a treatment dummy for the experimental case 

Frisch-Waugh-Lovell (FWL) theorem 

Regression and causality 

OLS Review 

Regression (matrix algebra) with a treatment dummy for the experimental case 

What's going on behind the scenes? 

Simple case 

• Relationship between outcome Y; and treatment indicator T; - -• Regress the outcome on the treatment indicator, and a constant 

• Xi- (,!_ T;) 

: :·:-tr: ·: "::~ated~tJ~-.--"'""'" ~ "'-~, 
l T NT+l '"' 

l TN 

t 



Simple case 

, _, , {;;';) -Nr) ~ , ( I \!) 
• (XX) = ~ {N - Nr ) \ ~ ® .:;, - 1 N; 

Simple case 

• X'y = G 

Simple case 

Simple case 

Simple case 

Simple case 

Simple case 

.. J 

··I 
·· ·!) 
... Q 

~ (l.:~, Y;) 
L~1 Y; 

J ( I -!) (L~, Y;) 
(x 'x )-1X 1y Nc _1 I/; L~, Y; --



Simple case 

Simple case 

Simple case 

• The OLS estimate of the intercept is Yc 

• T he coefficient of the treatment dummy is Y7 - Ye 

How precise are these est,mates7 

• What is the variance of F = (X'x) - 1X'y 

• Recall Y = Xf3 + u 

• ii ~(X'x)-'X'(X~ +u) 

• F = (X'x)- 1X'X /3 + (X1x)- 1 X1u 

• F=/3+ (X 1x) - 1 X1 u 

• lf E(uX) = O 

• V( ffe) = (X'X)-1X'V(u)X(X'X)-1 (matrix version of V(b+ aY) = a2Y] 

How precise are these estimates? 

• Let N7 = r,N and Ne= (1- 1-)N 

• Since we don't know o-2, use 1f--r (Y - Y)2 = 1f--r (U) 2 as an estimator 

Simulations• 

s.sq• l 

beta • 0 . 2 

#Let's create potential outcomes 
rnorm (n•N, mean •mu O , sd•s. sq) # control potential outcome 

Yl <- YO -+ beta # treatment potential outcome 

#Leta randomly assign people to treatment 

Z.sim <- rbinom (n• N, aize• l , prob•. 5 ) # Do a random assignment 

'i .sim <- 'i t •Z.aim -t 'iO•( t -Z.aim) # Reveal outcomes according to assignment 

OLS • lm ('i .sim-z. aim) 

summary (OLS) 



OLS estimator 

How precise are these est1mates7 

• This should tell us how much our estimates vary on different samples 

sqrt ( sum (OLS$ residua1s · 2 )/(N - 2 )•( 1 / sum (Z ... i ;-=Q)) ) 
sqrt ( sum (OLS$ reaiduals · 2 )/ <N- 2 )•(1f ( ~ O)• s~ ))) 

S1mulationsl 

s.sq• l 

bet a • O . 2 

Reps• lOOO 

estimate. vector •NULL 

for (r in 1 :Reps){ 

Ne. "'' 

YO <- rnor!ll (n•N, mean •mu O , sd •s.sq) # control potential outcome 

Y1 <-Y O + beta # treatment potential outcome 

Z. sim <- rbinom (n•N, size • 1 , prob • . 5 ) # Do a randolll assignment 

Y. sim <- Y1 •Z. sim + YO•( l -Z. sim) # Reveal outcomes according to assignmen 

OLS • lm (Y.sim·z.sim) 

beta _estimate • 1rnmmary (OLS)$ coef ( 2 , 1 ) 

es t i!llate_ vector • c (es t i!llate_ vector , be t a _es tilllate) 

sd (estimate_vector ) 

Big picture 

• We let the computer do the calculations, which are tedious even for small n 

• Good to know what's going on behind the scenes 

• But I honestly do not care if you know how invert a matrix 

• Important things in life to understand 

• What '§ is (an estimator of a parameter we do not observe) 

• Whatthestandarderror is(thestandarddeviationoftheestimator) 

• What a confidence interval is (an interva l where we know with some probability the 
true estimate lives) 

• What a p-value is (largest probability of obtaining results at least as extreme as 
those actually observed, under t he assumption that the null hypothesis is correct) 

OLS Review 

Linear algebra review 

Law of iterated expectations 

OLS basics 

Conditional expectation function 

"Algebraic" properties of OLS 

Properties of OLS estimators 

Regression (matrix algebra) with a treatment dummy for the experimental case 

Frisch- Waugh- Lovell (FWL) theorem 

Regression and causality 

OLS Review 

Frisch-Waugh-Lovell (FWL) theorem 



Regression Anatomy Theorem - Frisch-Waugh-Lovell (FWL) theorem 

Regression Anatomy Theorem - Frisch-Waugh-Lovell (FWL) theorem II 

• X1~ ; an ,~ residuals from auxiliary regressions 

• The parameter /31 can be rewritten as 

~ . Cov(y; . xu) - ~ Q 
\_) Var(x1;) Va~ 

• 131 is a scaled covariance with the actual data or with the residuals 

Big picture 

• Regression anatomy theorem helps us interpret a single slope coefficient in a 

multiple regression model by the aforementioned decomposition 

• Also, help us understand "OLS" as a "matching estimator" (try to compare 

observations that are alike in the Xs) 

OLS Review 

Linear algebra review 

Law of iterated expectations 

OLS basics 

Conditional expectation function 

"Algebraic" properties of OLS 

Properties of OLS estimators 

Regression (matrix algebra) with a treatment dummy for the experimental case 

Frisch- Waugh- Lovell (FWL) theorem 

Regression and causality 

OLS Review 

Regression and causality 

Regression and causality 

~I 

• When is regression causal? Whenever the CEF that regression approximates (or 

equalsifthetruthislinear)iscausal 

• Next: discuss one assumption under which the CEF has a causal interpretation 



Potential outcomes - reminder 

• A treatment ( T) induces two "potential outcomes" for individual i 

• The untreated outcome Yo, 
• The treated outcome Yi; 

Potential outcomes - reminder 

• A treatment ( T) induces two "potential outcomes" for individual i 

• The untreated outcome Yo, 
• The treated outcome Yi; 

• T he observed outcome 

{
Y1; i.f T; =l 

Y, 
Yo; 1f T; =0 

Yo;+ (Yi;- Yo;)T; 

Potential outcomes - reminder 

• A treatment ( T) induces two "potential outcomes" for individual i 

• The untreated outcome Yo, 
• The treated outcome Yi; 

• T he observed outcome 

Y; {Y1; '.f T; = l 
Yo; 1f T; = 0 

Y0; + (Yii - Y0;)T; 

• T he impact for any individual is 6; = Y1 ; - Yo; 

Potential outcomes reminder 

• A treatment ( T) induces two "potential outcomes" for individual i 
• The untreated outcome Yo, 
• The treated outcome Y1; 

• T he observed outcome 

{
Y1; i.f T; =l 

Y, 
Yo; 1f T; =0 

Yo;+ (Yi;- Yo;)T; 

• T he impact for any individual is ,5; = Yi; - Yo; 

• Fundamental problem Never observe both potential outcomes for the same 

individua l 

We can't Just compared treated/untreated mdtviduals 

• We observe Y; = Yo; + ( Yi; - Yo;) T; -----­&;=imp,ict 

• If we compare the outcomes of treated and untreated individuals 

E(Y,IT, ~ 1) - E(Y,IT; ~ 0) 

We can't Just compared treated/untreated md1v1duals 

• We observe Y; = Yo; + ( Yi ; - Yo;) T; -----­O; = imp,ict 

• If we compare the outcomes of treated and untreated individ uals 

E(Y;I T; = 1) - ~(Y;IT; = 0) E(Yv lT; = 1)-E(Yo; IT; = l)+ 

E(Y0,I T; = 1) - E(Yo; IT; = 0) 



We can't Just compared treated/untreated individuals 

• We observe Y; = Yo; + ( Y1; - Yo;) T; 
'---' 

li, = impact 

• If we compare the outcomes of treated and untreated individ uals 

E(Y;IT; = 1) - E(Y;IT; = 0) 

Unconfoundedness 

Assumption (Unconfoundedness) 
(Y, ,, Yo;)U T; I X; 

fnwoFffi"s: 

E(Yv lT; = 1)-E(Yo; IT; = 1)+ 

E(Y0,I T; = 1) - E(Yo; IT; = 0) = + ove,oge h u tment effect on the t ,eoted 

E(Y0,I T; = 1) - E(Yo, IT; = 0) 

1. Once we condition on observable characteristics X;, the treatment T; is as good 

as randomly assigned 

2. Put differently, within the group of individuals with the same characteristics x;, we 
have a randomized experiment 

3. Yet another way of saying it is that conditional on x; , the selection bias disappears 

Uncounfoundedness is fundamentally untestable and should always be discussed' 

Overlap 

• In order to exploit the unconfoundedness assumption, for all values of x; we need 

to have both treated and untreated units 

• Otherwise, either no treatment or no control group for some values of x; 

• Propensity score, which gives us the probability of .L-=-J, given X; = x 

p(x)=P(T; =l 8 

• e.{A). = 1 means that there are no control units (everyone is treated) 

• ~ means that there are no treated units (no one is treated) 

Assumption (Ove rlap) 
0 < p(x) < 1 fora/Ix 

• In contrast to unconfoundedness. overlap is testable since we can compute p(x) 

from the data 

ldent1f1cat1on under unconfoundedness 

• How can we identify t reatment effects under unconfoundedness? 

• Define the conditional mean difference as 

7J}= E(Y, I 7+ = 1,x; =x] - E[Y; I T; =0,x; = {] 

• Cooditioaa8~ x~~:, ;·;; :~,::: ::•_·;[";;";,: ;,h:; :p:],i; me 

E[~ l ~ x; = x] - £[~ 1 ~ , x; = x] 

£[Yi; Ix; = x] - E[Yo; Ix; = x] '-
- ---v E[ ~ l x;= x] 

• T he second equality is well-defined for every x by the ~ mpt ion 

• T he third equality is by unconfoundedness 

ldent1f1cation under unconfoundedness 

@ the ATE for individuals with charateristics x; = x 

• We can get the (unconditional) AT E as 

~ ~ = E[E[Yu - Yo; Ix;]] 

'-J =~ 

Discrete covariates 

• T he results so far are rather abstract. 

• Suppose x; is binary. In this case the formula becomes 

E(Y1; - Yo.] ----. l~J .~ 
m~an d iff. on~ x; = l fract. with x; = l 
+ ~ · l!(x; = OD 

m~a n di ff. in group with x, = O fract . with x; = 0 



An example: causal effect of gender on adm1ss1ons 

Major Admissions _ Admit , Deny Total 

400 00 

100 300 

50 50 

Women 300 100 400 

• T; is gender (T1 = 1 if male and T; = 0 if female) 

•fx; = M; ~Choice of major } 

• Unconfoundedness: gender is independent of admission outcomes conditional on 

major 

An example· causal effect of gender on adm1ss1ons 

JT,\=~o-~ -~ 
1:1i= 100/ 400-~ = -0.5 

P(M, - !) -~ 10'!)/ (1500) -,-

P( M, - 8) - ~ 0)/ 1500 - 0.533 

~ E = 0.161. 0.47 + H .5 ~ 3 = - 0.19 2)- --- --.I - .- ...._--

Regression and causality 

r\~ 
• Under unconfoundedness, the CEF E[Y1 I T1 , X1L has a~ 

• Thus, a linear regression model has an (approximate) causal interpretation under 

unconfoundedness. 

Regression and causality 

• If the population regression model is: 

Y;=0T1 + Xf/3 +u1 

• Th-8 '°"'""' auoss x '"d thos ~ 
A 
6 

What 1f \ 1s not constant? 

tal 

400 200 e_ 
100 300 400 

50 50 100 

300 100 400 

S1mulat1ons• 

# Lets create the data 

# ~ A 400 meninB, 100 "omeninA, 400 "omenin B 

#code major A as 1 and B as zeroq() 

Data • data. frame ( ~ inE:rnct • c ( r =-iit"t .,.S,00 ) , ~ 0 , 2QQ2, , 

rep {1 100 ), rep ( 0 , 3_Q,Ql , 

11 p U 50 1 reof9 fiO l 
rep (i , 300 ), rep ( 0 , 100)), 

~ ~ r ep ( 0 , 400 ), rep ( l , 100 ), rep ( 0 , 400 )), 

Treatment • c ( r~oJ."r :y ( t , 4 ~ , 10~ , 400 ))) 

summary ( lm ( 6;d minExa,$.Ji - ~ + Major . ~ ~ ata•Data)) 

summary ( lm ( Ad mi nExact"Treatment~~ , subset • ~ 0 ,data•Data)) 

summary ( lm (Adm 1 nExact"Treatment ~ ,data • Data)) 



What 1f \ 1s not constant? 

• Estimate 

Y; = 0T; + Xf f3 +u; 

• Regression yields O = - 0.3 ,f. ATE - - 0.19 

• In general, we get the""Tol lowing weighted ver 

• Regression produces a treatment-variance weighted average of Jx (proof in Angrist 

• In our case a},1x; ; I:; IIX; )( l;::.ff T; - IX aod Pischke MHE ~ ~~ 

• a},I M"aja,~A = mtoo , C 

• a},I M"ai.,..~B = ~~ ( 

What 1f \ 1s not constant? 

• T herefore: 

~~~~_ii.2 
Y,~T,IMaj.,..=A P(Ma)Or =A)+ Ja aT; Ma· = P Ma or= 8) 

a1or = A)+ O"T,IMajo,=BP(Major = 8) 

Big picture 

• Beware of what OLS gives you 

• Still causal interpretation, even if Jx is not constant -
• Weighted average of different Jx 

• Weightsdependonthevariance! 

Beyond regression 

• Regression is only one method to obtain causal effects under uncounfoundedness 

• Other popular methods are: matching and inverse probability weighting 

• Assumption are the same. they generally yield similar results (but implicit ~ 
are different) 

• A great review is: Recent Developments in the Econometrics of Program 

Evaluation by lmbens and Wooldrige (2009) 

• Check t his out: http:/ /vwv .nber .org/minicourse3. html 

Some important remarks 
(based on Cyrus Sami1's lecture notes) 

For most researchers. the math obscures the assumptions. Without an ex­

periment, a natural experiment, a discontinuity, or some other strong design, 

no amount of econometric or statistical modeling can make the move from 

correlation to causation persuasive. (Sekhon, 2009, p. 503) 

• At the end of the day, OLS (and other matching/ weighting estimators) "mop up" 

imbalances that makes CIA plausible 

• T hought experiment necessary to test CIA: 

• How could it be that two units that are identical wit h respe<:t to all mean ingful 
background factors nonetheless re<:eive diffe rent treatment? 

• Your answer to this question is your source of identification 


